Skip to main content
Log in

Experimental myotonia in mammalian skeletal muscle: changes in membrane properties

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

When myotonia is induced in rat diaphragms either by addition of 2,4-dichlorphenoxyacetate to the solution in which the excised muscle is bathed or by feeding animals on 20,25-diazocholesterol, the most significant change in membrane properties of the myotonic muscle fibres is an increase of the specific membrane resistance by a factor of 2 to 2.5. Membrane resting potential and capacitance are not altered. Like in healthy muscle, in 20,25-induced myotonic muscle the fibre membrane does not show rectifier properties ± 12 mV around the resting potential. The threshold for eliciting an action potential is unchanged but it is easier to start a burst of action potentials with a suprathreshold stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyd, I. A., Martin, A. R.: Membrane constants of mammalian muscle fibres. J. Physiol. (Lond.)147, 450–457 (1959).

    Google Scholar 

  • Brown, G. L., Harvey, W. H.: Congenital myotonia in the goat. Brain62, 341–363 (1939).

    Google Scholar 

  • Bryant, S. H.: Cable properties of external intercostal muscle fibres from myotonic and nonmyotonic goats. J. Physiol. (Lond.)204, 539–550 (1969).

    Google Scholar 

  • —, Lipicky, R. J., Herzog, W. H.: Variability of myotonic signs in myotonic goats. Amer. J. vet. Res.29, 2371–2381 (1968).

    Google Scholar 

  • Bucher, N. L. R.: Effects of 2,4-dichlorophenoxyacetic acid on experimental animals. Proc. Soc. exp. Biol. (N. Y.)63, 204 (1946).

    Google Scholar 

  • Burns, T. W., Dale, H. E., Langley, P. L.: Normal and myotonic goats receiving diazacholesterol. Amer. J. Physiol.209, 1227–1232 (1965).

    Google Scholar 

  • Castillo del, J., Machne, X.: Effect of temperature on the passive electrical properties of the muscle fibre membrane. J. Physiol. (Lond.)120, 431–434 (1953).

    Google Scholar 

  • Denny-Brown, D., Nevin, S.: The phenomenon of myotonia. Brain64, 1 (1941).

    Google Scholar 

  • Eyzaguirre, C., Folk, B. P., Zierler, K. L., Lilienthal, J. L., Jr.: Experimental myotonia and repetitive phenomena: the veratrinic effects of 2,4-dichlorphenoxyacetate (2,4-D) in the rat. Amer. J. Physiol.155, 69–77 (1948).

    Google Scholar 

  • Falk, G., Landa, G. F.: Prolonged response of skeletal muscle in the absence of penetrating anions. Amer. J. Physiol.198, 289–299 (1960).

    Google Scholar 

  • Forssmann, W. G., Siegrist, S., Orci, L., Girardier, L., Pictet, R., Rouiller, C.: Fixation par perfusion pour la microscopie électronique essai de généralisation. J. Microscopie6, 279–304 (1967).

    Google Scholar 

  • Goodgold, J., Eberstein, A.: An electromyographic study of induced myotonia in rats. Exp. Neurol.21, 159–166 (1968).

    Google Scholar 

  • Hodgkin, A. L., Rushton, W. A. H.: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B133, 444–479 (1946).

    Google Scholar 

  • Hofmann, W. W., Alston, W., Rowe, G.: A study of individual neuromuscular junctions in myotonia. Electroenceph. clin. Neurophysiol.21, 521–537 (1966).

    Google Scholar 

  • Hutter, O. F., Noble, D.: The chloride conductance of frog skeletal muscle. J. Physiol. (Lond.)151, 89–102 (1960).

    Google Scholar 

  • —, Padsha, S. M.: Effect of nitrate and other anions on the membrane resistance of frog skeletal muscle. J. Physiol. (Lond.)146, 117–132 (1959).

    Google Scholar 

  • Kao, C. Y., Stanfield, P. R.: Actions of some anions on electrical properties and mechanical threshold of frog twitch muscle. J. Physiol. (Lond.)198, 291–309 (1968).

    Google Scholar 

  • Kern, R., Blumhoff, J., Kuhn, E.: Ruhe- und Aktionspotential am Rattenzwerchfell bei experimenteller Myotonie nach 20,25-Diazacholesterin. Z. exp. Med.153, 265–268 (1970).

    Google Scholar 

  • Kiyohara, T., Sato, M.: Membrane constants of red and white muscle fibers in the rat. Jap. J. Physiol.17, 720–725 (1967).

    Google Scholar 

  • Kuhn, E., Dorow, W., Kahlke, W., Pfisterer, H.: Myotonie nach 20,25-Diazacholesterin bei der Ratte. — Elektromyographie, Mechanokardiographie, Fettsäureanalysen der Phosphatide des Skeletmusckels. Klin. Wschr.46, 1043–1045 (1968).

    Google Scholar 

  • Kuhn, E., Stein, W.: Modellmyotonie nach 2,4-Dichlorphenoxyacetat (2,4-D) bei der Ratte. In vitro- und in vivo-Untersuchungen von 2,4-D auf den Energiestoffwechsel des Muskels. Klin. Wschr.43, 673 (1965).

    Google Scholar 

  • Landau, W. M.: The essential mechanism in myotonia. An electromyographic study. Neurology (Minneap.)2, 369–388 (1952).

    Google Scholar 

  • Lipicky, R. J., Bryant, S. H.: Sodium, potassium and chloride fluxes in intercostal muscle from normal goats and goats with hereditary myotonia. J. gen. Physiol.50, 89–111 (1966).

    Google Scholar 

  • ——, Salmon, J. H.: Cable parameters, sodium, potassium, chloride and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita. J. clin. Investigation50, 2091–2103 (1971).

    Google Scholar 

  • Norris, F. H., Jr.: Unstable membrane potential in human myotonic muscle. Electroenceph. clin. Neurophysiol.14, 197–201 (1962).

    Google Scholar 

  • Riecker, G., Dobbelstein, H., Röhl, D., Bolte, H. D.: Messungen des Membranpotentials einzelner quergestreifter Musckelzellen bei Myotonia congenita (Thomsen). Klin. Wschr.42, 519–522 (1964).

    Google Scholar 

  • Ritchie, J. M.: The effect of nitrate on the active state of muscle. J. Physiol. (Lond.)126, 155–168 (1954).

    Google Scholar 

  • Rüdel, R., Senges, J.: Membrane properties of myotonic muscle fibres. Excerpta Medica Int. Congress Series237, 68 (1971).

    Google Scholar 

  • Senges, J., Rüdel, R.: Experimental myotonia in mammalian skeletal muscle. Changes in contractile properties. Pflügers Arch.331, 315–323 (1972).

    Google Scholar 

  • Stein, W., Kuhn, E.: Modellmyotonie nach 2,4-Dichlorphenoxyacetat (2,4-D). Isoliertes Rattenzwerchfell als einfaches Untersuchungsobjekt. Klin. Wschr.46, 328–330 (1968).

    Google Scholar 

  • Szaimi, T., Tomita, T.: Electrical properties of the frog skeletal muscle in Cl-free sulphate-, ferrocyanide-, and glutamate-Ringer's solution. Jap. J. Physiol.13, 641–656 (1963).

    Google Scholar 

  • Winer, N., Klachko, D. M., Baer, R. D., Langley, R. L., Burns, T. W.: Myotonic response induced by inhibitors of cholesterol biosynthesis. Science153, 312–313 (1966).

    Google Scholar 

  • Zolovick, A. J., Norman, R. L., Fedde, M. R.: Membrane constants of muscle fibers of rat diaphragm. Amer. J. Physiol.219, 654–657 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüdel, R., Senges, J. Experimental myotonia in mammalian skeletal muscle: changes in membrane properties. Pflugers Arch. 331, 324–334 (1972). https://doi.org/10.1007/BF00592693

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00592693

Key words

Navigation