Skip to main content
Log in

Characteristics of the Transmission of Excitation in Rat Neuromuscular Synapses at Different Periods of Postnatal Development

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Studies on diaphragm muscle neuromuscular preparations from rats at different states of postnatal development compared the morphological characteristics and functions of the synaptic apparatus, including the time parameters of evoked secretion. Along with nerve ending areas smaller than those in adults, neonates also showed a reduced rate of conduction along motor nerves, reduced intensities of evoked and spontaneous quantum secretion, and very marked fluctuations in true synaptic delays in single-quantum endplate currents. The high level of asynchronicity in the phasic secretion of acetylcholine quanta, along with the longer lifetime of the open state of ion channels in the synapses of neonates, partially compensated for the decrease in the reliability of synaptic transmission due to the reduction in the quantum composition of the postsynaptic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Balice-Gordon and J. W. Lichtman, “In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions,” J. Neurosci., 73, No. 2, 834–855 (1993).

    Google Scholar 

  2. E. Bukcharaeva, K. Kim, J. Moravec, et al., “Noradrenaline synchronizes quantal release at frog neuromuscular junctions,” J. Physiol., 517, 879–888 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. E. Bukharaeva, D. Samigullin, E. Nikolsky, and L. Magazanik, “Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium,” J. Neurochem., 100, 939–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. E. Bukharaeva, D. Samigullin, E. Nikolsky, and F. Vyskocil, “Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate,” J. Physiol., 538, 837–848 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. J. Diamond and R. Miledi, “A study of fetal and newborn rat muscle fibers,” J. Physiol., 162, 393–408 (1962).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. M. Favero, G. Busetto, and A. Cangiano, “Spike timing plays a key role in synapse elimination at the neuromuscular junction,” Proc. Natl. Acad. Sci. USA, 109, No. 25, 1667–1675 (2012).

    Article  Google Scholar 

  7. J. D. Feldman, A. R. Bazzy, T. R. Cummins, and G. G. Haddad, “Developmental changes in neuromuscular transmission in the rat diaphragm,” J. Appl. Physiol., 71, 280–286 (1991).

    CAS  PubMed  Google Scholar 

  8. E. Ferraro, F. Molinari, and L. Berghella, “Molecular control of neuromuscular junction development,” J. Cachexia Sarcopenia Muscle, 3, 13–23 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  9. R. Fesce, “The kinetics of nerve-evoked quantal secretion,” Phil. Trans. Roy. Soc. London, B. Biol. Sci., 354, 319–329 (1999).

    Article  CAS  Google Scholar 

  10. M. Fournier, M. Alula, and G. C. Sieck, “Neuromuscular transmission failure during postnatal development,” Neurosci. Lett., 125, 34–36 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. E. Gutmann, V. Hanlikova, and F. Vyskocil, “Age changes in cross-striated muscle of the rat,” J. Physiol., 216, 331–343 (1971).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. B. W. Hughes, L. L. Kusner, and H. J. Kaminski, “Molecular architecture of the neuromuscular junction,” Muscle Nerve, 33, 445–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. S. Iwasaki, A. Momiyama, O. D. Uchitel, and T. Takahashi, “Developmental changes in calcium channel types mediating central synaptic transmission,” J. Neurosci., 20, No. 1, 59–65 (2000).

    CAS  PubMed  Google Scholar 

  14. B. Katz and R. Miledi, “The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction,” Proc. Roy. Soc. B, 161, 483–495 (1965).

    Article  CAS  Google Scholar 

  15. A. M. Kelly and S. I. Zacks, “The fine structure of motor endplate histogenesis,” J. Cell Biol., 42, 154–169 (1969).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. S. S. Kelly, “The effect of age on neuromuscular transmission,” J. Physiol., 274, 51–62 (1978).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. J.-W. Lin and S. Faber, “Modulation of synaptic delay during synaptic plasticity,” Trends Neurosci., 25, 449–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. T. Meier and B. G. Wallace, “Formation of that neuromuscular junction: molecules and mechanisms,” BioEssays, 20, No. 10, 819–829 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. A. R. Punga and M. A. Ruegg, “Signaling and aging at the neuromuscular synapse: lessons learnt from neuromuscular diseases,” Curr. Opin. Pharmacol., 12, 340–346 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. B. Sabatini and W. Regehr, “Timing of synaptic transmission,” Annu. Rev. Physiol., 61, 521–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. M. Santafe, A. Garca, M. Lanuza, et al., “Calcium channels coupled to neurotransmitter release at dually innervated neuromuscular junctions in the newborn rat,” Neuroscience, 102, No. 3, 697–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. L. Shi, A. K. Fu, and N. Y. Ip, “Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction,” Trends Neurosci., 35, No. 7, 441–453 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. C. Slater, “Reliability of neuromuscular transmission and how it is maintained,” Handb. Clin. Neurol., 91, 27–101 (2008).

    Article  PubMed  Google Scholar 

  24. B. Soucek, “Influence of latency fluctuations and the quantal process of transmitter release on the end-plate potential’s amplitude distribution,” Biophys. J., 11, 127–139 (1971).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. L. Tarsa and Y. Goda, “Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons,” Proc. Natl. Acad. Sci. USA, 99, No. 2, 1012–1016 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. S. G. Turney and J. W. Lichtman, “Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: evidence for synaptic competition and its mechanism,” PLoS Biology, 10, No. 6, 1–15 (2012).

    Article  Google Scholar 

  27. A. C. Wareham, R. H. Morton, and G. H. Meakin, “Low quantal content of the endplate potential reduces safety factor for neuromuscular transmission in the diaphragm of the newborn rat,” Brit. J. Anesthesia, 72, 205–209 (1994).

    Article  CAS  Google Scholar 

  28. B. Wiedenmann and W. W. Franke, “Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles,” Cell, 41, No. 3, 1017–1028 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. V. Witzemann, “Development of the neuromuscular junction,” Cell. Tiss. Res., 326, 263–271 (2006).

    Article  Google Scholar 

  30. S Wood and C. Slater, “Safety factor at the neuromuscular junction,” Progr. Neurobiol., 64, 393–429 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Khuzakhmetova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 12, 1544–1554, December, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuzakhmetova, V.F., Samigullin, D.V., Nurullin, L.F. et al. Characteristics of the Transmission of Excitation in Rat Neuromuscular Synapses at Different Periods of Postnatal Development. Neurosci Behav Physi 44, 960–966 (2014). https://doi.org/10.1007/s11055-014-0010-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-0010-7

Keywords

Navigation