Skip to main content
Log in

High energy phosphates in a red and a white muscle of the rat

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Previously we reported that ATP as well as phosphoryl creatine decreased by 10% under ether anesthesia vs. barbiturate anesthesia in rat leg muscle. This decrease did not occur when the sciatic nerve was severed. We therefore suggested that the decrease of high energy phosphates under ether was due to an activation of muscle fibers, presumably of red ones.

In this study this postulate is proved by measuring adenine nucleotides and phosphoryl creatine in a red and a white muscle, —m. pyramidalis and m. adductor magnus of the rat.

The conditions compared are: 1. Barbiturate (Inactin) anesthesia, 2. Ether anesthesia, 3. Ether-anesthesia plus destroying the segments L 4/5 of the spinal cord, 4. Electrical stimulation under Inactin-anesthesia, and 5. “Thermal contracture”.

Under Inactin anesthesia the ATP content is slightly lower in the red muscle (6230±177 nanomoles per gram fresh weight) than in the white (6860±122 nanomoles per gram fresh weight); the phosphoryl creatine contents do not differ significantly between the two muscles.

Unter ether anesthesia the ATP content is lowered by 25% vs. Inactin anesthesia in the red muscle while the ATP content remained unchanged under ether in the white muscle.

Phosphoryl creatine is lowered by 10% under ether vs. Inactin anesthesia in the red muscle, while it is unchanged in the white muscle.

After destroying the segments L4/5 of the spinal cord ATP and phosphoryl creatine remain unchanged under ether vs. Inactin anesthesia in the red as well as in the white muscle.

One minute tetanic contraction as produced by direct electrical stimulation results in a 35% decrease of phosphoryl creatine in both the red and the white muscle with matching increments of free creatine. Under the same condition neither ATP nor ADP are significantly affected in the white muscle. In the red muscle the total adenine nucleotide decreases by 11% due to a 16% fall of ATP wich is not stoichiometrically matched by a 16% increase of ADP.

“Thermal contracture” (repeated freezing and thawing in situ) causes considerable decreases of ATP and of phosphoryl creatine in the red as well as in the white muscle.

The results indicate that the known virtual disagreement with the Lohmann concept of the ATP and phosphoryl creatine decrements in the activated state is less prominent in red than in white muscle.

The data are consistent with the postulate that a neurally mediated activation of red fibers occurs under ether anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrew, B. L.: The effect of certain anaesthetics on the activity of small motor fibres serving the hind limb of the rat. J. Physiol. (Lond.)155, 59 (1961).

    Google Scholar 

  2. Barany, M.: ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol.50, 197 (1967).

    Google Scholar 

  3. Beatty, C. H., R. D. Peterson, andR. M. Bocek: Metabolism of red and white muscle fiber groups. Amer. J. Physiol.204, 939 (1963).

    Google Scholar 

  4. Bowman, W. C., andC. Raper: The effects of sympathomimetic amines on chronically denervated skeletal muscles. Brit. J. Pharmacol.24, 98 (1965).

    Google Scholar 

  5. Buecher, Th., K. Krejci, W. Ruessmann, H. Schnitger, andW. Wesemann: InChance, B.,et al.: Rapid mixing and sampling techniques, p. 255ff. New York-London: Academic Press 1964.

    Google Scholar 

  6. Buelbring, E., andJ. H. Burn: The sherrington phenomenon. J. Physiol. (Lond.)86, 61 (1936).

    Google Scholar 

  7. Cain, D. F., andR. E. Davies: Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem. biophys. Res. Commun.8, 361 (1962).

    Google Scholar 

  8. Carpenter, D. O., andE. Henneman: A relation between the threshold of stretch receptors in skeletal muscle and the diameter of their axons. J. Neurophysiol.29, 353 (1966).

    Google Scholar 

  9. Chin, N. K., M. Cope, andM. Pang: Number and distribution of spindle capsules in seven hind limb muscles of the cat. In: Symposium on Muscle Receptors, p. 241, ed. byD. Barker. Hong Kong: Hong Kong Univ. Press 1962.

    Google Scholar 

  10. Citoler, P., L. Benitez, andW. Maurer: Autoradiographische Untersuchung der Protein-Synthese in roten und weißen Muskelfasern. Naturwissenschaften53, 42 (1966).

    Google Scholar 

  11. Davies, R. E., M. J. Kushmerick, andR. E. Larson: ATP, activation, and the heat of shortening of muscle. Nature (Lond.)214, 148 (1967).

    Google Scholar 

  12. Diete-Spiff, K., andJ. E. Pascoe: The spindle motor nerves to the gastrocnemius muscle of the rabbit. J. Physiol. (Lond.)149, 120 (1959).

    Google Scholar 

  13. Dreyfus, J. C.: Sur les differences metaboliques entre les muscles rouges et blancs chez le lapin normal. Rev. franç. Étud. clin. biol.12, 343 (1967).

    Google Scholar 

  14. Fleckenstein, A., E. Gerlach, J. Janke u.P. Marmier: Die Inkorporation von markiertem Sauerstoff aus Wasser in die ATP-, Kreatinphosphat- und Orthophosphat-Fraktion intakter Muskeln bei Ruhe, tetanischer Reizung und Erholung. Pflügers Arch. ges. Physiol.271, 75 (1960).

    Google Scholar 

  15. —, u.J. Janke: Der Austausch von radioaktivem32P-markierten Orthophosphat mit den P, P und P von ATP und mit Kreatinphosphat bei Muskelruhe, Temperaturvariation und elektrischer Reizung. Pflügers Arch. ges. Physiol.256, 237 (1957).

    Google Scholar 

  16. Gauthier, G. F., andH. A. Padykula: Cytological studies of fiber types in skeletal muscle. J. Cell Biol.28, 333 (1966).

    Google Scholar 

  17. Gerez, C., u.R. Kirsten: Untersuchungen über Ammoniakbildung bei der Muskelarbeit. Biochem. Z.341, 534 (1965).

    Google Scholar 

  18. Goldberg, A. L.: Protein synthesis in tonic and phasic skeletal muscles. Nature (Lond.)216, 1219 (1967).

    Google Scholar 

  19. Grant, R.: Receptors and sensory Perception. New Haven: Yale University Press 1955.

    Google Scholar 

  20. Gutmann, E., andI. Syrovy: Metabolic differentiation of the anterior and posterior latissimus dorsi of the chicken during development. Physiol. bohemoslov.16, 232 (1967).

    Google Scholar 

  21. Henneman, E., andC. B. Olson: Relations between structure and function in the design of skeletal muscles. J. Neurophysiol.28, 581 (1965).

    Google Scholar 

  22. G. Somjen, andD. O. Carpenter: Functional significance of cell size in spinal motoneurons. J. Neurophysiol.28, 560 (1965).

    Google Scholar 

  23. Hess, A., andG. Pilar: Slow fibres in the extraocular muscles of the cat. J. Physiol. (Lond.)169, 780 (1963).

    Google Scholar 

  24. Hohorst, H. J.: Habilitationsschrift, Marburg 1962.

  25. F. H. Kreutz u.Th. Buecher: Über Metabolitgehalte und Metabolit-Konzentrationen in der Leber der Ratte. Biochem. Z.332, 18 (1959).

    Google Scholar 

  26. M. Reim, andH. Bartels: Creatine kinase equilibrium in muscle and the significance of adenosine triphosphate and adenosine diphosphate levels. Biochem. biophys. Res. Commun.7, 142 (1962).

    Google Scholar 

  27. Huxley, A. F.: Muscle. Ann. Rev. Physiol.26, 131 (1964).

    Google Scholar 

  28. Janke, J.: Die Aufteilung der ADP-, ATP- und Orthophosphat-Fraktionen in der ruhenden und kontrahierten Skeletmuskulatur in jeweils zwei Komponenten unterschiedlicher Löslichkeit. Pflügers Arch. ges. Physiol.291, R63 (1966).

    Google Scholar 

  29. P. Marmier u.A. Fleckenstein: Die Bestimmung der absoluten Umsetzungsraten von ATP, Kreatinphosphat und Orthophosphat in der ruhenden Skeletmuskulatur mit Hilfe von H2O18 als Tracer. Pflügers Arch. ges. Physiol.282, 119 (1965).

    Google Scholar 

  30. Kirsten, E., R. Kirsten, P. Arese, H. Kraus, andE. Snigula: A study on the interdependance of contractile tome and metabolite levelsin vivo in rat skeletal muscle. Biochem. Z.344, 233 (1966).

    Google Scholar 

  31. Kirsten, R., H. Wolff, andE. Kirsten: The responses to ether anesthesia and to electrical stimulation of glycolytic metabolites in a red and a white muscle of the rat. Pflügers Arch.307, 154 (1969).

    Google Scholar 

  32. Krause, E.-G.: Über die Wirkung von Diäthyläther auf die Aktivität der Glykogenphosphorylase b-Kinase in Herz, Skeletmuskel und Leber der Ratte. Experientia (Basel)22, 479 (1966).

    Google Scholar 

  33. Matthews, P. B. C.: Muscle spindles and their motor control. Physiol. Rev.44, 219 (1964).

    Google Scholar 

  34. Mayr, R., L. Stockinger u.W. Zenker: Elektronenmikroskopische Untersuchungen an unterschiedlich innervierten Muskelfasern der äußeren Augenmuskulatur des Rhesusaffen. Z. Zellforsch.75, 434 (1966).

    Google Scholar 

  35. Mommaerts, W. F. H. M., andA. Wallner: The breakdown of adenosine triphosphate in the contraction cycle of the frog sartorius muscle. J. Physiol. (Lond.)193, 343 (1967).

    Google Scholar 

  36. Pette, D., u.Th. Buecher: Proportionskonstante Gruppen in Beziehung zur Differenzierung der Enzymaktivitätsmuster von Skeletmuskeln des Kaninchen. Hoppe-Seylers Z. physiol. Chem.331, 180 (1963).

    Google Scholar 

  37. Romanul, F. C. A.: Enzymes in muscle. Arch. Neurol. (Chic.)11, 355 (1964).

    Google Scholar 

  38. Ruska, H.: Struktur und Funktion der Skeletmuskelfasern. Verh. dtsch. Ges. inn. Med. 71. Kongr. 1965, S. 93.

  39. Seraydarian, K., W. F. H. M. Mommaerts, andA. Wallner: The amount and compartmentalization of adenosine diphosphate in muscle. Biochem. biophys. Acta (Amst.)65, 443 (1962).

    Google Scholar 

  40. Somjen, G., D. Carpenter, andE. Henneman: Selective depression of alpha motoneurons of small size by ether. J. Pharmacol. exp. Ther.148, 380 (1965).

    Google Scholar 

  41. Zwiebel, R., u.R. Kirsten: Eine Mikromethode zur Bestimmung von Metaboliten im Muskelgewebe. Z. klin. Chem. klin. Biochem.6, 407 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsten, E., Kirsten, R. High energy phosphates in a red and a white muscle of the rat. Pflugers Arch. 311, 209–225 (1969). https://doi.org/10.1007/BF00590526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00590526

Key-Words

Schlüsselwörter

Navigation