Skip to main content
Log in

Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Glycogenin, glycogen-debranching enzyme (GDE) and glycogen phosphorylase (GP) are important enzymes that contribute to glycogen particle metabolism. In Long-Evans Hooded rat whole muscle homogenates prepared from extensor digitorum longus (EDL, fast-twitch) and soleus (SOL, oxidative, predominantly slow twitch), it was necessary to include α-amylase, which releases glucosyl units from glycogen, to detect glycogenin but not GDE or GP. Up to ∼12 % of intramuscular glycogen pool was broken down using either in vitro electrical stimulation or leaving muscle at room temperature >3 h (delayed, post-mortem). Electrical stimulation did not reveal glycogenin unless α-amylase was added, although in post-mortem muscle ∼50 and ∼30 % of glycogenin in EDL and SOL muscles, respectively, was detected compared to the amount detected with α-amylase treatment. Single muscle fibres were dissected from fresh or post-mortem EDL muscles, mechanically skinned to remove surface membrane and the presence of glycogenin, GDE and GP as freely diffusible proteins (i.e. cytoplasmic localization) compared by Western blotting. Diffusibility of glycogenin (∼20 %) and GP (∼60 %) was not different between muscles, although GDE increased from ∼15 % diffusible in fresh muscle to ∼60 % in post-mortem muscle. Under physiologically relevant circumstances, in rat muscle and within detection limits: (1) The total cellular pool of glycogenin is always associated with glycogen granules, (2) GDE is associated with glycogen granules with over half the total pool associated with the outer tiers of glycogen, (3) GP is only ever weakly associated with glycogen granules and (4) addition of α-amylase is necessary in order to detect glycogenin, but not GDE or GP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baque S, Guinovart JJ, Ferrer JC (1997) Glycogenin, the primer of glycogen synthesis, binds to actin. FEBS Lett 417:355–359

    Article  CAS  PubMed  Google Scholar 

  2. Campbell DG, Cohen P (1989) The amino acid sequence of rabbit skeletal muscle glycogenin. Eur J Biochem 185:119–125

    Article  CAS  PubMed  Google Scholar 

  3. Essen B (1978) Glycogen depletion of different fibre types in human skeletal muscle during intermittent and continuous exercise. Acta Physiol Scand 103:446–455

    Article  CAS  PubMed  Google Scholar 

  4. Goodman C, Blazev R, Stephenson G (2005) Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat. Clin Exp Pharmacol Physiol 32:749–756

    Article  CAS  PubMed  Google Scholar 

  5. Graham TE, Yuan Z, Hill AK, Wilson RJ (2010) The regulation of muscle glycogen: the granule and its proteins. Acta Physiol Oxford 199:489–498

    Article  CAS  Google Scholar 

  6. Greenhaff PL, Soderlund K, Ren JM, Hultman E (1993) Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. J Physiol 460:443–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Hansen BF, Derave W, Jensen P, Richter EA (2000) No limiting role for glycogenin in determining maximal attainable glycogen levels in rat skeletal muscle. Am J Physiol Endocrinol Metab 278:E398–E404

    CAS  PubMed  Google Scholar 

  8. Kraniou Y, Cameron-Smith D, Misso M, Collier G, Hargreaves M (2000) Effects of exercise on GLUT-4 and glycogenin gene expression in human skeletal muscle. J Appl Physiol 88:794–796

    Article  CAS  PubMed  Google Scholar 

  9. Lau X, Zhang Y, Kelly DJ, Stapleton DI (2013) Attenuation of Armanni-Ebstein lesions in a rat model of diabetes by a new anti-fibrotic, anti-inflammatory agent, FT011. Diabetologia 56:675–679

    Article  CAS  PubMed  Google Scholar 

  10. Lomako J, Lomako WM, Whelan WJ (1988) A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB Journal 2:3097–3103

    CAS  PubMed  Google Scholar 

  11. Manasek FJ (1969) Myocardial cell death in the embryonic chick ventricle. J Embryol Exp Morphol 21:271–284

    CAS  PubMed  Google Scholar 

  12. Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, Graham TE (2002) Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol 93:1598–1607

    Article  CAS  PubMed  Google Scholar 

  13. Melendez R, Melendez-Hevia E, Cascante M (1997) How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J Mol Evol 45:446–455

    Article  CAS  PubMed  Google Scholar 

  14. Mollica JP, Oakhill JS, Lamb GD, Murphy RM (2009) Are genuine changes in protein expression being overlooked? Reassessing Western blotting. Anal Biochem 386:270–275

    Article  CAS  PubMed  Google Scholar 

  15. Murphy RM, Lamb GD (2013) Important considerations for protein analyses using antibody based techniques: down-sizing Western blotting up-sizes outcomes. J Physiol Lond 591:5823–5831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Murphy RM, Mollica JP, Beard NA, Knollmann BC, Lamb GD (2011) Quantification of calsequestrin 2 (CSQ2) in sheep cardiac muscle and Ca2 + −binding protein changes in CSQ2 knockout mice. Am J Physiol Heart Circ Physiol 300:H595–H604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Murphy RM, Mollica JP, Lamb GD (2009) Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules. Exp Cell Res 315:1015–1028

    Article  CAS  PubMed  Google Scholar 

  18. Murphy RM, Verburg E, Lamb GD (2006) Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle. J Physiol 576:595–612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Murphy RM, Xu H, Latchman H, Larkins NT, Gooley PR, Stapleton DI (2012) Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle. Am J Physiol Cell Physiol 303:C1146–C1155

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen J, Schroder HD, Rix CG, Ortenblad N (2009) Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J Physiol 587:3679–3690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim Biophys Acta 1478:165–185

    Article  CAS  PubMed  Google Scholar 

  22. Parker GJ, Koay A, Gilbert-Wilson R, Waddington LJ, Stapleton D (2007) AMP-activated protein kinase does not associate with glycogen alpha-particles from rat liver. Biochem Biophys Res Commun 362:811–815

    Article  CAS  PubMed  Google Scholar 

  23. Patterson MF, Stephenson GM, Stephenson DG (2006) Denervation produces different single fiber phenotypes in fast- and slow-twitch hindlimb muscles of the rat. Am J Physiol Cell Physiol 291:C518–C528

    Article  CAS  PubMed  Google Scholar 

  24. Pitcher J, Smythe C, Campbell DG, Cohen P (1987) Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin. Eur J Biochem 169:497–502

    Article  CAS  PubMed  Google Scholar 

  25. Pitcher J, Smythe C, Cohen P (1988) Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur J Biochem 176:391–395

    Article  CAS  PubMed  Google Scholar 

  26. Ryu JH, Drain J, Kim JH, McGee S, Gray-Weale A, Waddington L, Parker GJ, Hargreaves M, Yoo SH, Stapleton D (2009) Comparative structural analyses of purified glycogen particles from rat liver, human skeletal muscle and commercial preparations. Int J Biol Macromol 45:478–482

    Article  CAS  PubMed  Google Scholar 

  27. Shearer J, Graham TE, Battram DS, Robinson DL, Richter EA, Wilson RJ, Bakovic M (2005) Glycogenin activity and mRNA expression in response to volitional exhaustion in human skeletal muscle. J Appl Physiol 99:957–962

    Article  CAS  PubMed  Google Scholar 

  28. Smythe C, Watt P, Cohen P (1990) Further studies on the role of glycogenin in glycogen biosynthesis. Eur J Biochem 189:199–204

    Article  CAS  PubMed  Google Scholar 

  29. Taylor C, Cox AJ, Kernohan JC, Cohen P (1975) Debranching enzyme from rabbit skeletal muscle. Purification, properties and physiological role. Eur J Biochem 51:105–115

    Article  CAS  PubMed  Google Scholar 

  30. Tsintzas OK, Williams C, Boobis L, Greenhaff P (1995) Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. J Physiol 489(Pt 1):243–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robyn M. Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Stapleton, D. & Murphy, R.M. Rat skeletal muscle glycogen degradation pathways reveal differential association of glycogen-related proteins with glycogen granules. J Physiol Biochem 71, 267–280 (2015). https://doi.org/10.1007/s13105-015-0407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0407-y

Keywords

Navigation