Skip to main content
Log in

Effects of aldosterone on lipid metabolism and renal oxygen consumption in the rat

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The plasma level of free fatty acids (FFA) in adrenalectomized rats increases by 50% after treatment with aldosterone (2 μg/100 g rat).

Lipolytic activity in peripheral fat tissue is lowered after adrenalectomy and doubles after in vivo administration of aldosterone to adrenalectomized rats (measured as free fatty acid release in vitro from epididymal fat tissue).

Lypolysis of adipose tissue stimulated by the in vitro presence of ACTH also increases after in vivo administration of aldosterone.

Incorporation of intravenously administered label from U14C-palmitate into total extractable lipid of renal tissue is augmented 3 h after aldosterone administration to adrenalectomized rats, while no increase of the radioactivity is observed in total lipid from liver tissue. Treatment with aldosterone does not affect the total lipid content of kidney or liver in adrenalectomized rats.

The oxygen consumption rate of kidney cortex slices with lactate, β-hydroxybuterate or acetoacetate as substrates is lowered after in vivo administration of aldosterone to adrenalectomized rats. With succinate, however, the respiratory rate of kidney slices increases after aldosterone treatment of adrenalectomized rats, the ouabain-sensitive respiration being more affected than the ouabain-insensitive respiration. An interpretation of the O2 consumption data implicating competition of lipid metabolism for CoA-SH is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barac-Nieto, M., Cohen, J. J.: Non-esterified fatty acid uptake by dog kidney; Effects of probenicid and chlorothiazide. Amer. J. Physiol.215, 98–107 (1968)

    Google Scholar 

  2. Barac-Nieto, M., Cohen, J. J.: The metabolic fates of palmitate in the dog kidney in vivo. Nephron8, 488–499 (1971)

    Google Scholar 

  3. Batenburg, J. J., Olson, M. S.: The inactivation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria. Biochem. biophys. Res. Commun.66, 533–540 (1975)

    Google Scholar 

  4. Bhaduri, A., Srere, P. A.: The incorporation of citrate carbon into fatty acids. Biochim. biophys. Acta (Amst.)70, 221–230 (1963)

    Google Scholar 

  5. Chen, R. F.: Removal of fatty acids from serum albumin by charcoal treatment. J. biol. Chem.25, 173–181 (1967)

    Google Scholar 

  6. Deetjen, P., Kramer, K.: Die Abhängigkeit des O2-Verbrauches der Niere von der Na-Rückreabsorption. Pflügers Arch. ges. Physiol.273, 636–650 (1961)

    Google Scholar 

  7. Duncombe, W. G.: The colorimetric micro determination of non esterified fatty acids in plasma. Clin. chim. Acta.9, 122–125 (1964)

    Google Scholar 

  8. Edelman, I. S.: Regulation of transepithelial sodium transport by aldosterone. In: Transport mechanisms in epithelia (H. H. Ussing and N. A. Thorn, eds.), pp. 185–199 Copenhagen: Munksgaard 1973

    Google Scholar 

  9. Eggstein, M., Kreutz, F. H.: Eine neue Bestimmung der Neutralfette in Blutserum und Gewebe. Klin. Wschr.44, 262–267 (1966)

    Google Scholar 

  10. Fimognari, G. M., Porter, G. A., Edelman, I. S.: The role of the tricarboxylic acid cycle in the action of aldosterone in sodium transport. Biochim. biophys. Acta (Amst.)135, 89–99 (1967)

    Google Scholar 

  11. Folch, J., Less, M., Sloane-Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem.266, 497–509 (1957)

    Google Scholar 

  12. Guder, W. G., Wieland, O. H.: Metabolism of isolated kidney tubules. Europ. J. Biochem.31, 69–79 (1972)

    Google Scholar 

  13. Jeanrenaud, B.: Effect of glucocorticoid hormones on fatty acid mobilization and re-esterification in rat adipose tissue. Biochem. J.103, 627–633 (1967)

    Google Scholar 

  14. Kinne, R., Kirsten, R.: Der Einfluß von Aldosteron auf die Aktivität mitochondrialer und cytoplasmatischer Enzyme in der Rattenniere. Pflügers Arch. ges. Physiol.300, 244–254 (1968)

    Google Scholar 

  15. Kirsten, E., Kirsten, R., Leaf, A., Sharp, G. W. G.: Increased activity of enzymes of the tricarboxylic acid cycle in response to aldosterone in the toad bladder. Pflügers Arch. ges. Physiol.300, 213–225 (1968)

    Google Scholar 

  16. Kirsten, E., Kirsten, R.: Redox state of pyridine nucleotides in renal response to aldosterone. Amer. J. Physiol.223, 229–235 (1972)

    Google Scholar 

  17. Kirsten, E., Nelson, K.: Aldosterone and the initial rates of ATP formation by mitochondria from rat kidney cortex and outer medulla. 6th Intern. Congr. Nephrol., Abstract 39 (1975)

  18. Lien, E. L., Goodman, D. B. P., Rasmussen, H.: Effects of an acetyl-coenzyme A carboxylase inhibitor and a sodium-sparing diuretic on aldosterone-stimulated sodium transport, lipid synthesis, and phospholipid fatty acid composition in the toad urinary bladder. Biochemistry14, 2749–2754 (1975)

    Google Scholar 

  19. Mann, H. B., Whitney, D. R.: On a test of whether one of two radom variables is stochastically larger than the other. Ann. Math. Statist.18, 50 (1947)

    Google Scholar 

  20. Robinson, J. R.: The effect of sodium and chloride ions upon swelling of rat kidney slices treated with a mercurial diuretic. J. Physiol. (Lond.)134, 216–228 (1956)

    Google Scholar 

  21. Samuels, H. H., Tomkins, G. M.: Relation of steroid structure to enzyme induction in hepatoma tissue culture cells. J. molec. Biol.52, 57–74 (1970)

    Google Scholar 

  22. Schwandt, P., Knedel, M., Lindlbauer, R.: Experimentelle Untersuchungen zum Verfahren der in-vitro-Lipolyse. Z. Klin. Chem. u. Klin. Biochem.6, 81–85 (1968)

    Google Scholar 

  23. Shepherd, D., Yates, D. W., Garland, P. B.: The relationship between the rates of conversion of palmitate into citrate or acetoacetate and the acetyl-coenzyme A content of rat liver acetate and acetyl-coenzyme A content of rat liver mitochondria. Biochem. J.97, 83 c (1965)

    Google Scholar 

  24. Srere, P. A.: The molecular physiology of citrate. Nature (Lond.)205, 766–770 (1965)

    Google Scholar 

  25. Srere, P. A.: The enzymology of the formation and breakdown of citrate. Advanc. Enzymol.43, 57–101 (1975)

    Google Scholar 

  26. Ullrich, K. J., Pehling, G.: Aktiver Natriumtransport und Sauerstoffverbrauch in der äußeren Markzone der Niere. Pflügers Arch. ges. Physiol.267, 207 (1958)

    Google Scholar 

  27. Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric Techniques. 4. ed. Minneapolis 1: Burgess Publishing Co. 1964

    Google Scholar 

  28. Watson, J. A., Lowenstein, J. M.: Citrate and the conversion of carbohydrate into fat. J. biol. Chem.245, 5993–6002 (1970)

    Google Scholar 

  29. Zöllner, N., Kirsch, K.: On the quantitative determination of lipids by means of the general sulfophosphovanilline reaction of the many neutral lipids. Z. ges. exp. Med.135, 545–561 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsten, R., Nelson, K., Rüschendorf, U. et al. Effects of aldosterone on lipid metabolism and renal oxygen consumption in the rat. Pflugers Arch. 368, 189–194 (1977). https://doi.org/10.1007/BF00585195

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00585195

Key words

Navigation