Skip to main content
Log in

The dielectric properties of alumina substrates for microelectronic packaging

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dielectric characterization of alumina substrate materials used in high-performance microelectronic packaging is described. These materials included both pure and impure polycrystalline substrates and, as a reference standard, pure and chromium-doped single crystals of alumina. For each material the permittivity (ε′) and dielectric loss (ε″) has been measured over a frequency range of 0.5 kHz to 10 MHz, at room temperature, and correlated with the structure and composition as determined by supplementary techniques. At room temperature the pure substrates show the frequency independence of both ε′ and ε″, characteristic of pure single-crystal material. The permittivity (ε′= 10.1) agrees closely with the average of the anisotropic values for the single crystal but the dielectric loss is an order of magnitude higher than in the single crystal, giving tan σ ≈ 1.5 × 10−3. The impure substrates compared with the pure, show a small increase in ε′ and a marked, frequency-dependent increase in dielectric loss. Measurements have also been made in both the high- and low-temperature ranges (i.e. 20 to 600 ° C and 77 to 293 K, respectively) in order to establish the variation of permittivity with temperature and frequency. At temperatures below 200 °C the temperature coefficient of permittivity, [(ε′ −1)(ε′ + 2)]−1 (∂ε′/∂T) p is about 9 × 10−6 K−1 for the pure materials but this increases rapidly with impurity addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Logan, D. Holland, J. S. Thorp andG. Partridge, in Proceedings of the IEEE European Manufacturing Technology Symposium, Vol. 14 Paris, France (1988).

  2. J. S. Thorp andN. E. Rad,J. Mater. Sci. 16 (1981) 255.

    Google Scholar 

  3. S. V. J. Kenmuir.J. S. Thorp andB. L. J. Kulesza,ibid. 18 (1983) 1725.

    Google Scholar 

  4. A. H. Scott andH. L. Curtis,J. Res. Nat. Bur. Stand. 22 (1939) 747.

    Google Scholar 

  5. J. S. Thorp, N. E. Rad, D. Evans andC. D. H. Williams,J. Mater. Sci. 21 (1986) 3091.

    Google Scholar 

  6. W. Low,Phys. Rev. 105 (1957) 801.

    Google Scholar 

  7. J. S. Thorp, “Masers and Lasers: Physics and Design” (Macmillan, London, 1967).

    Google Scholar 

  8. A. K. Chaudry andK. V. Rao,Phys. Status Solidi 32 (1969) 731.

    Google Scholar 

  9. K. Lal andK. H. Jhans,J. Phys. C. 10 (1977) 1315.

    Google Scholar 

  10. M. Akhtaruzzaman, PhD thesis, University of Durham (1989).

  11. J. Fontanella, C. Andeen andD. Schuele.J. Appl. Phys. 45 (1974) 2852.

    Google Scholar 

  12. S. Govinda andK. V. Rao,Phys. Status Solidi (a) 27 (1975) 639.

    Google Scholar 

  13. E. V. Loewenstein, D. R. Smith andR. L. Morgan.Appl. Opt. 12 (1973) 398.

    Google Scholar 

  14. E. E. Russell andE. R. Bell J. Opt. Soc. Amer. 57 (1967) 341.

    Google Scholar 

  15. S. Roberts andD. D. Coon,ibid. 52 (1962) 1923.

    Google Scholar 

  16. A. K. Jonsher,Nature 267 (1977) 673.

    Google Scholar 

  17. Idem, ibid.,253 (1975) 717.

    Google Scholar 

  18. J. S. Thorp, A. B. Ahmad, B. L. K. Kulesza andT. G. Bushell.J. Mater. Sci. 19 (1984) 3680.

    Google Scholar 

  19. J. S. Thorp, S. V. J. Kenmuir, D. Evans andN. E. Rad,ibid,23 (1988) 707.

    Google Scholar 

  20. H. Looyenga.Physica 31 (1965) 401.

    Google Scholar 

  21. K. V. Rao andA. Smakula,J. Appl. Phys. 36 (1965) 2031.

    Google Scholar 

  22. F. L. Weichman.Can. J. Phys. 51 (1973) 680.

    Google Scholar 

  23. R. S. Bever andR. L. Sproull,Phys. Rev. 83 (1951) 801.

    Google Scholar 

  24. A. J. Bosman andE. E. Havinga,Phys. Rev. 129 (1963) 1593.

    Google Scholar 

  25. J. Link, M. C. Wintersgill, J. J. Fontella, V. E. Bean andC. G. Andeen.J. Appl. Phys. 52 (1981) 986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorp, J.S., Akhtaruzzaman, M. & Evans, D. The dielectric properties of alumina substrates for microelectronic packaging. J Mater Sci 25, 4143–4149 (1990). https://doi.org/10.1007/BF00582495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00582495

Keywords

Navigation