Skip to main content
Log in

Fumed-Alumina-Derived Nanoporous Alumina as a New Low-k Dielectric Material for Microelectronics Packaging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Dielectric materials with low relative dielectric constants (low-k dielectrics) are needed for electrical insulation to reduce signal propagation delay in microelectronics packaging. This paper reports use of nanoporous alumina of pore size mainly <50 nm and relative dielectric constant 2.0 (measured at frequencies from 100 kHz–2 MHz). Both values are lower than those previously reported. The material is innovatively made by compacting aggregates of submicron particles of fumed alumina. On compaction at 200 kPa, the aggregates are squashed, resulting in mechanical interconnection among the aggregates and formation of a nanostructured sheet with porosity 88%. Because the compacted material is, electrically, equivalent to solid alumina and air in parallel, its relative dielectric constant is 9, that of solid alumina. Reducing the pressure from 200 kPa to 50–100 kPa results in greater porosity (92–93%) and higher relative dielectric constant (2.0–2.3) for the compacted material, in addition to higher relative dielectric constant (13–21) for the solid alumina (because of the increase in the surface capacitance associated with surface charges). For a compaction pressure of 200 kPa, the thermal conductivity of the compacted material is 0.134 W/(m·K) and the upper bound of the thermal conductivity of the solid alumina is 0.94 W/(m·K). The fumed alumina is moldable by compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ma, Y. Wang, Z. Min, and L. Zhong, Adv. Polym. Technol. 32, 21358/1 (2013).

    Article  Google Scholar 

  2. R. Sasi kumar, M. Ariraman, and M. Alagar, RSC Adv. 4, 19127 (2014).

    Article  Google Scholar 

  3. S. Lazarouk, S. Katsouba, A. Leshok, A. Demianovich, V. Stanovski, S. Voitech, V. Vysotski, and V. Ponomar, Microelectron. Eng. 50, 321 (2000).

    Article  Google Scholar 

  4. S. Lazarouka, S. Katsoubaa, A. Demianovichb, V. Stanovskib, S. Voitech, V. Vysotski, and V. Ponomar, Solid State Electron. 44, 815 (2000).

    Article  Google Scholar 

  5. F. Ito, H. Shobha, M. Tagami, T. Nogami, S. Cohen, Y. Ostrovski, S. Molis, K. Maloney, J. Femiak, and J. Protzman, et al., Microelectron. Eng. 92, 62 (2012).

    Article  Google Scholar 

  6. M.T. Alam, R.A. Pulavarthy, J. Bielefeld, S.W. King, and M.A. Haque, J. Electron. Mater. 43, 746 (2014).

    Article  Google Scholar 

  7. S. Wen and D.D.L. Chung, J. Electron. Packag. 127, 235 (2005).

    Article  Google Scholar 

  8. A. Wang and D.D.L. Chung, Carbon 72, 135 (2014).

    Article  Google Scholar 

  9. P. Somasundaran, Encyclopedia of Surface and Colloid Science, 2nd Edition, Vol. 7 (Boca Raton: CRC Press, 2006), p. 5317.

    Google Scholar 

  10. C. Lin and D.D.L. Chung, J. Mater. Sci. 42, 9245 (2007).

    Article  Google Scholar 

  11. C. Lin and D.D.L. Chung, J. Electron. Mater. 38, 2069 (2009).

    Article  Google Scholar 

  12. B.C. Daly, H.J. Maris, W.K. Ford, G.A. Antonelli, L. Wong, and E. Andideh, J. Appl. Phys. 92, 6005 (2002).

    Article  Google Scholar 

  13. H.T. Vo and F.G. Shi, Microelectron. J. 33, 409 (2002).

    Article  Google Scholar 

  14. http://www.engineeringtoolbox.com/relative-permittivity-d_ 1660.html. Accessed 9 May 2014.

  15. http://en.wikipedia.org/wiki/Aluminium_oxide_(data_page). Accessed 9 May 2014.

  16. W.D. Callister Jr and D.G. Rethwisch, Fundamentals of Materials Science and Engineering, 4th ed. (Hoboken: Wiley, 2012), p. 850.

    Google Scholar 

  17. K.E. Wilkes, R.B. Dinwiddie, and R.S. Graves (eds.), Thermal Conductivity, vol. 23 (Boca Raton: CRC press, 1996), p. 604.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takizawa, Y., Chung, D.D.L. Fumed-Alumina-Derived Nanoporous Alumina as a New Low-k Dielectric Material for Microelectronics Packaging. J. Electron. Mater. 44, 2211–2220 (2015). https://doi.org/10.1007/s11664-015-3667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3667-y

Keywords

Navigation