Skip to main content
Log in

Large strain analysis of rubber-like materials based on a perturbed Lagrangian variational principle

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A mixed finite element method is presented for the large strain analysis of rubber-like materials, which are considered to be nearly incompressible. Two types of constitutive relations are included: generalized Rivlin and Ogden's models. The finite element equations are derived on the basis of a perturbed Lagrangian variational principle from which both the displacement and pressure fields are independently approximated by appropriate shape functions. A physically meaningful pressure parameter is introduced in the expression of complementary energy. In the paper, a special effort is made to split the deformation energy into two distinct parts: isochoric and hydrostatic parts. By doing this, a quadratic convergence rate of nonlinear iterative solution is achieved, particularly for problems deformed in the large strain range. The finite element equations are specialized for a two-dimensional 9-node Lagrange element with three-term pressure parameters. Five examples are given to demonstrate the application of the proposed numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agyris, J. H.; Dunne, P. C.; Angelpoulos, T.; Bichat, B. (1974): Large nature strains and some special difficulties due to nonlinearity and incompressibility in finite elements. Comp. Mech. Appl. Meth. Engng. 4, 219–278

    Google Scholar 

  • Alexander, H. (1968). A constitutive relation for rubber-like materials. Int. J. Engng. Sci. 6, 549–563

    Google Scholar 

  • Atluri, S. N.; Reissner, E. (1989). On the formulation of variational theorems involving volume constraints. J. Comput. Mech. 5, 337–344

    Google Scholar 

  • Babuska, I.; Oden, J. T., Lee, J. K. (1977): Mixed-hybrid finite element approximation of second order elliptic boundary-value problems. Comp. Met. Appl. Mech. Eng. 11, 175–206

    Google Scholar 

  • Bercovier, M. (1978): Perturbation of mixed variational problems, application to mixed finite element methods. R.A.I.R.O. Num. Anal. 12, 211–236

    Google Scholar 

  • Bercovier, M.; Jankovich, E.; Leblanc, F.; Durand, M. A. (1981): A finite element method for the analysis of rubber parts. experimental and analytical assessment. Comp. & Struct. 14, 385–391

    Google Scholar 

  • Brezzi, F. (1974): On the existence, uniqueness, and approximation of saddle-point problems arising from lagrange multipliers. R.A.I.R.O. 8-R 2, 129–151

    Google Scholar 

  • Cescotto, S.; Fonder, G. (1979): A finite element approach for large strains of nearly incompressible rubber-like materials. Int. J. Solids Struct. 15, 589–605

    Google Scholar 

  • Chang, T. Y. (1988): NFAP-a nonlinear finite element analysis program. October 12, Department of Civil Engineering, University of Akron, Akron, Ohio, 44325

    Google Scholar 

  • Finney, R. H.; Kumar, A. (1988): Development of material constants for nonlinear finite element analysis. Rubber Chem. and Technol. 61, November–December, 879–891

    Google Scholar 

  • Flory, P. J. (1961), Thermodynamic relations for high elastic materials. Transact. Faraday Soc. 57, 829–838

    Google Scholar 

  • Fried, I. (1974): Finite element analysis of incompressible material by residual balance. Int. J. Solids Struct. 10, 993–1002

    Google Scholar 

  • Gadala, M. S. (1986): Numerical solutions of nonlinear problems of continua — II. Survey of incompressibility constraints and software aspects. Comp. & Struct. 22, No. 5, 841–855

    Google Scholar 

  • Green, A. E.; Zerna, W. (1966). Theoretical elasticity. Oxford: Clarendon

    Google Scholar 

  • Häggbland, B.; Sundberg, J. A. (1983): Lagrange strain solutions of rubber components. Comp. & Struct. 17, 835–843

    Google Scholar 

  • Herrmann, L. R. (1965). Elasticity equation for incompressible and nearly incompressible materials by a variational theorem. AIAA Journal 3, 1896–1900

    Google Scholar 

  • Hughes, T. J. R. (1977): Equivalence of finite elements for nearly incompressible elasticity. J. Appl. Mech. 44, 181–183

    Google Scholar 

  • Hughes, T. J. R.; Carnoy, E. (1981): Nonlinear finite element shell formulation accounting for large membrane strains. In: Nonlinear Finite Element Analysis of Plates and Shells. ASME Special Publ. AMD Vol. 48, 193–208

  • Hughes, T. J. R. (1987). The finite element method. New Jersey: Prentice-Hall

    Google Scholar 

  • Jankovich, E.; Wall, T.; Ghadiali, N. D. (1985): Finite element computation of rubber parts. Battelle, Columbus lab., Monte Carlo 85, Autotechnologies, Jan 28–Feb 1

  • Key, S. W. (1969). A variational principle for incompressible and nearly incompressible anisotropic elasticity. Int. J. Solids Struct. 5, 951–964

    Google Scholar 

  • Malkus, D. S. (1976): Finite element displacement model, valid for any value of incompressibility. Int. J. Solids Struct. 12, 731–738

    Google Scholar 

  • Malkus, D. S.; Hughes, T. J. R. (1978): Mixed finite element methods — reduced and selective integration techniques: a unification of concepts. Comp. Meth. Appl. Engng. 15, 63–81

    Google Scholar 

  • Murakawa, H.; Atluri, S. N. (1979): Finite elasticity solutions using hybrid finite elements based on a complementary energy principle, part 2—incompressible materials. J. Appl. Mech. 46, 71–77

    Google Scholar 

  • Nagtegaal, J. C., Parks, D. M., Rice, J. R. (1974): On numerically accurate finite element solutions in fully plastic range. Comp. Meth. Appl. Mech. Engng. 4, 153–177

    Google Scholar 

  • Naylor, J. (1974). Stresses in nearly incompressible material by finite elements with application to calculation of excess pore pressures. Int. J. Numer. Meth. Eng. 8, 443–460

    Google Scholar 

  • Oden, J. T.; Sato, T. (1967): Finite strains and displacements of elastic membranes by finite element method. Int. J. Solids Struct. 3, 471–488

    Google Scholar 

  • Oden, J. T.; Key, J. E. (1970): Numerical analysis of finite axisymmetric deformations of incompressible elastic solids of revolution. Int. J. Solids Struct. 6, 497–518

    Google Scholar 

  • Oden, J. T.; Key, J. E. (1971): On some generalization of the incremental stiffness relations for finite deformation of compressible and incompressible finite elements. Nucl. Engng. Des. 15, 121–134

    Google Scholar 

  • Oden, J. T.; Kikuchi, N. (1982): Finite element methods for constrained problems in elasticity. Int. J. Num. Meth. Engg. 18, 701–725

    Google Scholar 

  • Oden, J. T.; Carey, G. F. (1984): Finite elements—special problems in solid mechanics. Vol. V. Englewood Cliffs, New Jersey: Prentice-Hall

    Google Scholar 

  • Ogden, R. W. (1972): Large deformation isotropic elasticity—on the correlation of theory and experiment for compressible rubber-like solids. Proc. Rheology Soc., London, Serial A, A 328, 567–583

    Google Scholar 

  • Ogden, R. W. (1976): Volume changes associated with the deformation of rubber-like solids. J. Mech. Phys. Solids 24, 323–338

    Google Scholar 

  • Ogden, R. W. (1982): Elastic deformations in rubberlike solids. In: Mechanics of Solids, R. Hill 60th Anniversary Volume, H. G. Hopkins and M. J. Sewell (eds.), 499–537

  • Rivlin, R. S. (1951): Large elastic deformations of isotropic materials, VII, experiments on the deformation of rubber. Philo. Trans. R. Soc. London Ser. A 243, 251–288

    Google Scholar 

  • Scharnhorst, T.; Pian, T. H. H. (1978): Finite element analysis of rubber-like materials by a mixed model. Int. J. Numer. Meth. Eng 12, 665–676

    Google Scholar 

  • Sidoroff, F. (1974): A nonlinear viscoelastic model with intermediate configuration J. de Mécanique 13, 679–713

    Google Scholar 

  • Simo, J. C.; Taylor, R. L.; Pister, K. S. (1985): Variational and projection methods for the volume constraint in finite deformation elastoplasticity. Comp. Meth. Appl. Mech. Eng. 51, 177–208

    Google Scholar 

  • Simo, J. C. (1988): A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition: part I—continuum formulation. Comp. Meth. Appl. Mech. Engg. 66, 199–219

    Google Scholar 

  • Sussman, T. S.; Bathe, K. J. (1987): A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. & Struct. 26, 357–409

    Google Scholar 

  • Taylor, R. L.; Pister, K. S.; Herrmann, L. R. (1968): On a variational theorem for incompressible and nearly incompressible elasticity. Int. J. Solids Struct. 4, 875–883

    Google Scholar 

  • Thomson, E. G. (1975): Average and complete incompressibility in finite element method. Int. J. Numer. Meth. Engg. 9, 925–932

    Google Scholar 

  • Tong, P. (1969): An assumed stress hybrid finite element method for an incompressible and nearly-incompressible material. Int. J. Solids Struct 5, 455–461

    Google Scholar 

  • Treloar, L. R. G. (1975): The physics of rubber elasticity. Oxford: Clarendon Press

    Google Scholar 

  • Zdunek, A. B.; Bercovier, M. (1986): Numerical evaluation of finite element methods for rubber parts. Proc. Sixth Int. Conf. on Vehicle Structure Mechanics, Society of Automotive Engineers, Detroit

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, December 17, 1990

Research work supported by National Science Foundation under the grant number EET-8714628

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, T.Y.P., Saleeb, A.F. & Li, G. Large strain analysis of rubber-like materials based on a perturbed Lagrangian variational principle. Computational Mechanics 8, 221–233 (1991). https://doi.org/10.1007/BF00577376

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00577376

Keywords

Navigation