Skip to main content
Log in

Grain boundary sliding behaviour of copper and alpha brass at intermediate temperatures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The role of grain boundary sliding in copper and Cu-30% Zn in the temperature range 0.50 to 0.72T m, whereT m is the absolute melting point of the material, is examined. First, sliding data obtained on these materials are presented. These results indicate that the stress exponent for sliding,n gbs, is similar to that for lattice deformation, while the activation energy for sliding,Q gbs, varies between about 0·5Q c and 1.6Q c, whereQ c is the activation energy for creep. Next, a comparison of the published values ofQ gbs for bicrystals and polycrystals suggests that grain boundary sliding in polycrystalline materials requires the accommodation of the sliding process, whereas in bicrystals, the absence of triple points and other grain boundaries results in intrinsic sliding. Finally, several models proposed for grain boundary sliding are discussed, and it is shown that they do not account for the observed results on copper and alpha brass. A phenomenological model is proposed, where it is assumed that grain boundary sliding results from the glide of dislocations on secondary slip planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Nix andJ. C. Gibeling, in “Flow and Fracture at Elevated Temperatures”, edited by R. Raj (American Society for Metals, Metals Park, Ohio, 1985) p. 1.

    Google Scholar 

  2. A. W. Mullendore andN. J. Grant,Trans. AIME 227 (1963) 319.

    CAS  Google Scholar 

  3. H. J. Westwood andD. M. R. Taplin,J. Mater. Sci. 20 (1975) 141.

    CAS  Google Scholar 

  4. R. L. Bell andT. G. Langdon,ibid. 2 (1967) 313.

    Article  CAS  Google Scholar 

  5. R. L. Bell andT. G. Langdon, in “Interfaces Conference”, edited by R. C. Gifkins (Butterworths, Sydney, 1969) p. 115.

    Google Scholar 

  6. H. Gleiter andB. Chalmers,Prog. Mater. Sci. 16 (1972) 179.

    Article  Google Scholar 

  7. V. Sklenička, K. Procházka andJ. Čadek,Z. Metallkde 63 (1973) 65.

    Google Scholar 

  8. T. G. Langdon, in “Deformation of Ceramic Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) p. 101.

    Chapter  Google Scholar 

  9. R. C. Gifkins,Metall. Trans. 8A (1977) 1507.

    Article  CAS  Google Scholar 

  10. R. S. Gates,Mater. Sci. Engng 27 (1977) 115.

    Article  CAS  Google Scholar 

  11. T. G. Langdon, in “The Microstructure and Design of Alloys: Proceedings of the Third International Conference on the Strength of Metals and Alloys”, Vol. 1 (The Institute of Metals and The Iron and Steel Institute, London, 1973) p. 222.

    Google Scholar 

  12. R. S. Gates andC. A. P. Horton,Mater. Sci. Engng 27 (1977) 105.

    Article  CAS  Google Scholar 

  13. W. R. Cannon,Phil. Mag. 25 (1972) 1489.

    Article  Google Scholar 

  14. R. Raj andM. F. Ashby,Metall. Trans. 2 (1971) 1113.

    Article  Google Scholar 

  15. F. R. N. Nabarro, in “Report of a Conference on Strength of Solids” (The Physical Society, London, 1948) p. 75.

    Google Scholar 

  16. C. Herring,J. Appl. Phys. 21 (1950) 437.

    Article  Google Scholar 

  17. R. L. Coble,ibid. 34 (1963) 1679.

    Article  Google Scholar 

  18. W. D. Nix, in “Rate Processes in Plastic Deformation of Materials”, edited by J. C. M. Li and A. K. Mukherjee (American Society for Metals, Metals Park, Ohio, 1975) p. 384.

    Google Scholar 

  19. S. V. Raj, PhD thesis, University of Southern California, Los Angeles (1984).

    Google Scholar 

  20. T. G. Langdon,Metals Forum 4 (1981) 14.

    CAS  Google Scholar 

  21. T. Watanabe andP. W. Davies,Phil. Mag. 37 (1978) 649.

    Article  CAS  Google Scholar 

  22. R. L. Bell, N. B. W. Thompson andP. A. Turner,J. Mater. Sci. 3 (1968) 524.

    Article  Google Scholar 

  23. T. Watanabe, M. Yamada, S. Shima andS. Karashima,Phil. Mag. 40 (1979) 667.

    Article  CAS  Google Scholar 

  24. S. V. Raj andT. G. Langdon,Acta Metall. 37 (1989) 843.

    Article  CAS  Google Scholar 

  25. T. G. Langdon andR. B. Vastava, in “Mechanical Testing for Deformation Model Development, ASTM (STP) 765”, edited by R. W. Rhode and J. C. Swearengen (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1982) p. 435.

    Chapter  Google Scholar 

  26. R. C. Gifkins, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and R. W. Evans (The Institute of Metals, London, 1987) p. 141.

    Google Scholar 

  27. J. Intrater andE. S. Machlin,J. Inst. Metals 88 (1959–60) 305.

    Google Scholar 

  28. P. Lagarde andM. Biscondi,Mem. Sci. Rev. Metall. 71 (1974) 121.

    CAS  Google Scholar 

  29. V. Sklenička, I. Saxl, J. Popule andJ. Čadek,Mater. Sci. Engng 18 (1975) 271.

    Article  Google Scholar 

  30. R. S. Gates,Acta Metall. 21 (1973) 855.

    Article  CAS  Google Scholar 

  31. R. C. Pond, D. A. Smith andP. W. J. Southerden, in “Proceedings of the 4th International Conference on the Strength of Metals and Alloys”, Vol. 1 (Laboratoire de Physique du Solide, E. N. S. M. I. M., Nancy, France, 1976) p. 378.

    Google Scholar 

  32. T. G. Langdon,Phil. Mag. 22 (1970) 689.

    Article  Google Scholar 

  33. R. C. Gifkins,J. Austral. Inst. Metals 18 (1973) 137.

    Google Scholar 

  34. F. W. Crossman andM. F. Ashby,Acta Metall. 23 (1975) 425.

    Article  CAS  Google Scholar 

  35. R. Fuentes-Samaniego, W. D. Nix andG. M. Pound,Phil. Mag. 42A (1980) 591.

    Article  Google Scholar 

  36. R. Fuentes-Samaniego andW. D. Nix,Scripta Metall. 15 (1981) 15.

    Article  Google Scholar 

  37. R. Fuentes-Samaniego, W. D. Nix andG. M. Pound,Acta Metall. 29 (1981) 487.

    Article  Google Scholar 

  38. W. D. Nix andB. Ilschner, in ‘Strength of Metals and Alloys (ICSMA 5)”, Vol. 3, edited by P. Haasen, V. Gerold and G. Kostorz (Pergamon Press, Oxford, 1980) p. 1503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, S.V. Grain boundary sliding behaviour of copper and alpha brass at intermediate temperatures. J Mater Sci 26, 1000–1008 (1991). https://doi.org/10.1007/BF00576778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576778

Keywords

Navigation