Skip to main content
Log in

Fracture mechanism in short fibre reinforced thermoplastic resin composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The properties of two types of short carbon fibre (CF) reinforced thermoplastic resin composites (CF-PPS and CF-PES-C), such as strength (σy). Young's modulus (E) and fracture toughness (K 1c), have been determined for various volume fractions (V f) of CF. The results show that the Young's modulus increases linearly with increasingV f with a Krenchel efficiency factor of 0.05, whereas σy andK 1c increase at first and then peak at a volume fraction of about 0.25. The experimental results are explained using the characteristics of fibre-matrix adhesion deduced from the load-displacement curves and fractography. By using a crack pinning model, the effective crack tensions (T) have been calculated for both composites and they are 57 kJ m−1 for CF-PPS and 4.2 kJ m−1 for CF-PES-C. The results indicate that the main contribution to the crack extension originates from localized plastic deformation of the matrix adjacent to the fibre-matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Moloneg, H. H. Kausch, T. Kaiser andH. R. Bear,J. Mater. Sci. 22 (1987) 381.

    Article  Google Scholar 

  2. J. Spanoudakis andR. J. Young,ibid. 19 (1984) 473.

    Article  CAS  Google Scholar 

  3. Idem, ibid. 19 (1984) 487.

    Article  CAS  Google Scholar 

  4. R. J. Young, in “Structure Adhesive”, edited by A. J. Kinloch (Elsevier, London, 1986) Ch. 6.

    Google Scholar 

  5. N. Amdouni, H. Sautereau, J. F. Gerard, F. Fernagut, G. Coulon andJ. M. Lefebeve,J. Mater. Sci. 25 (1990) 1435.

    Article  CAS  Google Scholar 

  6. A. J. Kinloch andR. J. Young, in “Fracture Behaviour of Polymers” (Elsevier Applied Science, 1983) Ch. 11.

  7. F. F. Lange andK. C. Radford,J. Mater Sci. 6 (1971) 1197.

    Article  CAS  Google Scholar 

  8. A. G. Evans,Phil. Mag. 26 (1972) 1327.

    Article  CAS  Google Scholar 

  9. D. J. Green, P. S. Nicholson andJ. D. Embery,J. Mater. Sci. 14 (1979) 1657.

    Article  Google Scholar 

  10. E. Orowan, in Proceedings of Symposium on Internal Stress in Metals and Alloys (Institute of Metals, 1948) p. 451.

  11. K. T. Faber andA. G. Evans,Acta Metall. 31 (1983) 565.

    Article  Google Scholar 

  12. S. Yamini andR. J. Young J. Mater. Sci. 15 (1980) 1823.

    Article  CAS  Google Scholar 

  13. V. B. Gupta, R. K. Mittal andMalti Goel,Compos. Sci. Teehnol. 37 (1990) 353.

    Article  CAS  Google Scholar 

  14. S. Yamini andR. J. Young,J. Mater. Sci. 15 (1980) 1814.

    Article  CAS  Google Scholar 

  15. P. J. Hine, B. Brew, R. A. Duckett andI. M. Ward,Compos. Sci. Technol. 40 (1991) 47.

    Article  CAS  Google Scholar 

  16. C. Zweben, W. S. Smith andM. W. Wardle, in “Composite Materials: Testing and Design”, edited by S. W. Tsai, ASTM STP674 (American Society for Testing and Materials, Philadelphia, 1979) p. 228.

    Google Scholar 

  17. H. Krenchel, “Fibre Reinforcement” (Akademisk Forlag, Copenhagen, 1964) p. 13.

    Google Scholar 

  18. M. J. Folks, “Short Fibre Reinforced Thermoplastics” (Research Studies Press, UK, 1985) p. 14.

    Google Scholar 

  19. D. C. Phillips andB. Harris, in “Polymer Engineering Composites”, edited by M. O. M. Richardson (Applied Science, 1977) p. 96.

  20. C. K. Y. Leung andV. C. Li,Composites 21 (1990) 305.

    Article  Google Scholar 

  21. T. Ricco, A. Pavan andF. Danusso,Polym. Engng Sci. 18 (1978) 774.

    Article  CAS  Google Scholar 

  22. D. B. Marshall andB. N. Cox,Acta Metall. 33 (1985) 2013.

    Article  Google Scholar 

  23. M. Taya andR. J. Arsenauit, “Metal Matrix Composites” (Pergamon, UK, 1989) Ch. 3

    Google Scholar 

  24. G. L. Hanna andS. Steingiser, in “Composite Materials: Testing and Design” edited by S. W. Tsai, ASTM STP674 (American Society for Testing and Materials, Philadelphia, 1979) p. 182.

    Google Scholar 

  25. L. M. Manocha,J. Mater. Sci. 17 (1982) 3039.

    Article  CAS  Google Scholar 

  26. P. P. Baneal andA. J. Ardell,Metallography 5 (1972) 97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, G.M., Lai, J.K.L. Fracture mechanism in short fibre reinforced thermoplastic resin composites. J Mater Sci 28, 5240–5246 (1993). https://doi.org/10.1007/BF00570071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570071

Keywords

Navigation