, Volume 45, Issue 3, pp 213–226 | Cite as

A histochemical study of the apparent deamination of proteins by sodium hypochlorite

  • Peter J. Stoward


The possible chemical mechanisms by which neutral solutions of sodium hypochlorite containing a high concentration of sodium chloride abolish the acidophilia of proteins in sections of fixed tissue are reviewed. The most probable one is the chlorination of the protein terminal amino groups, followed by the breakdown of the N-chloramine so formed into α-ketocarboxylic acid, nitrile or aldehyde groups. Hypochlorite solutions certainly do not deaminate tissue sections as was previously thought.

Experimental evidence for the formation of relatively stable N-chloramine groups in situ and their limited conversion to aldehydes is reported. For example, the acidophilia of hypochlorite-treated sections was found to be restored after flooding them with hydriodic acid followed by the extraction of the liberated iodine with an alcohol. The significance of these experimental findings is discussed.


Iodine Sodium Chloride Aldehyde Nitrile Experimental Evidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfert, M., Geschwind, I. I.: A selective staining method for basic proteins of cell nuclei. Proc. nat. Acad. Sci. (Wash.) 39, 991–999 (1953)Google Scholar
  2. Arx, E. von, Neher, R.: Eine multidimensionale Technik zur chromatographischen Identifizierung von Aminosäuren. J. Chromatog. 12, 329–341 (1963)Google Scholar
  3. Aubel, E., Asselineau, J.: Recherches sur l'emploi de l'hypochlorite de sodium dans le dosage de l'alanine, la valine et leucines. Biochim. biophys. Acta (Amst.) 2, 198–206 (1948)Google Scholar
  4. Baker, R. W. R.: Studies on the reaction between sodium hypochlorite and proteins. 1. Physico-chemical study of the course of the reaction. Biochem. J. 41, 337–342 (1947)Google Scholar
  5. Burstone, M. S.: An evaluation of histochemical methods for protein groups. J. Histochem. Cytochem. 3, 32–49 (1955)Google Scholar
  6. Cahn, J. W., Powell, R. E.: The Raschig synthesis of hydrazine. J. Amer. chem. Soc. 76, 2565–2567 (1954)Google Scholar
  7. Chu, C. H. U., Fogelson, M. H., Swinyard, C. A.: A histochemical test for alpha amino acids. J. Histochem. Cytochem. 1, 391 (1953)Google Scholar
  8. Dakin, H. D.: Oxidation of amino acids to cyanides. Biochem. J. 10, 319–323 (1916)Google Scholar
  9. Dakin, H. D.: On the oxidation of amino acids and of related substances with chloramine-T. Biochem. J. 11, 79–95 (1917)Google Scholar
  10. Dakin, H. D., Cohen, J. B., Daufrensne, M., Kenyon, J.: The antiseptic action of substances of the chloramine group. Proc. roy. Soc. B 89, 232–251 (1916)Google Scholar
  11. Feigl, F., Rosell, R. A.: Nachweis von organischen Oxydantien in der Tüpfelanalyse. Unterscheidung von Chloramin T und Alkalihypochlorit. Analyt. Chem. 159, 335–339 (1957)Google Scholar
  12. Goldschmidt, S., Steigerwald, C.: Über den Abbau von Proteinen durch Hypobromit. Ber. 58, 1346–1353 (1925)Google Scholar
  13. Herken, H., Silbersiepe, H. O.: Zur Spaltung von Peptidbindungen in Proteinen durch Hypochlorit. Arch. exp. Path. 212, 205–213 (1951)Google Scholar
  14. Ingols, R. S., Wyckoff, H. A., Kethley, T. W., Hodgden, H. W., Fincher, E. L., Hildebrand, J. C., Mandel, J. E.: Bacterial studies of chlorine. Ind. Eng. Chem. 45, 996–1000 (1953)Google Scholar
  15. Jaksic, M. M., Nikolic, B. Z., Csonka, I. M., Dordevic, A. B., Karanovic, D. M.: Neutral salts effect on available chlorine conversion to chlorate. Chem. Abs. 71, abstract no. 42746 (Abstract of russian article in Kem. Ind. 17, 707–711) (1969)Google Scholar
  16. Langheld, K.: Über das Verhalten von α-Aminosäuren gegen Natriumhypochlorit. Ber. 42, 2360–2375 (1909)Google Scholar
  17. Pereira, W. E., Hoyano, Y., Summons, R. E., Bacon, V. A., Duffield, A. M.: Chlorination studies II. The reaction of aqueous hypochlorous acid with α-amino acids and dipeptides. Biochim. biophys. Acta (Amst.) 313, 170–180 (1973)Google Scholar
  18. Raschig, F.: Vorlesungversuche aus der Chemie der anorganischen Stickstoffverbindungen. Ber. 40, 4580–4588 (1907)Google Scholar
  19. Robson, H. L.: Chloramines and chloroamines. In Kirk-Othmer's Encyclopedia of Chemical Technology. 2nd ed., vol. 4, p. 908–928. New York: Interscience 1964Google Scholar
  20. Ruddell, C. L.: The demonstration of anions generated by the action of sodium hypochlorite (NaOCl) on tissue sections, including observations on the unmasking of carbonyl groups. Histochemie 19, 319–339 (1969)Google Scholar
  21. Rydon, H. N., Smith, P. W. G.: A new method for the detection of peptides and similar compounds on paper chromatograms. Nature (Lond.) 169, 922–923 (1952)Google Scholar
  22. Smith, L.: Die Bildungsweise der Chlorhydrine. I. Mitteilung: Glyzerinchlorhydrine. Z. physikal. Chem. 92, 717–740 (1918)Google Scholar
  23. Stoward, P. J.: Histochemical studies of the formazan reaction, II. The conversation of periodate-reactive mucosubstances into diphenyl- and phenyl-4′-diazo-3,3′-dimethoxybiphenyl formazans and related derivatives. J. roy. micr. Soc. 87, 407–435 (1967 a)Google Scholar
  24. Stoward, P. J.: Studies in fluorescence histochemistry, III. The demonstration with salicylhydrazide of the aldehydes present in periodate-oxidized mucosubstances. J. roy. micr. Soc. 87, 247–257 (1967 b)Google Scholar
  25. Stoward, P. J.: The histochemical properties of some periodate-reactive mucosubstances of the pregnant Syrian hamster before and after methylation with methanolic thionyl chloride. J. roy. micro Soc. 87, 77–103 (1967 c)Google Scholar
  26. Stoward, P. J.: The histochemical reactions of methanolic thoinyl chloride with the anionic groups and basic protein component of sulphated mucosubstances. J. roy. micro. Soc. 88, 119–131 (1968)Google Scholar
  27. Stoward, P. J.: The mechanism of the apparent histochemical deamination of tissue proteins by sodium hypochlorite. Proc. roy. micro. Soc. 6, 16 (1970)Google Scholar
  28. Stoward, P. J., Plant, M.: The histochemical deamination of proteins with sodium hypochlorite. Proc. roy. micr. Soc. 3, 21–22 (1968)Google Scholar
  29. Stoward, P. J., Burns, J., Plant, M.: A tissue adhesive for paraffin sections intended for deamination with sodium hypochlorite. Histochemie 14, 212–214 (1968)Google Scholar
  30. Tomasi, J. A. de: Improving the technic of the Feulgen stain. Stain Technol. 11, 137–144 (1936)Google Scholar
  31. Urk, H. W. van: Het aantoonen van chlooramine en de Onderscheiding van hypochlorieten. Chem. Weekblad 26, 9–10 (1928)Google Scholar
  32. Wieland, T., Vogelbach, C., Bielig, H. J.: Das Verhalten der Aminosäuren gegenüber Natriumchlorit und ihre quantitative Desaminierung mit Hypochlorit. Ann. 561, 116–123 (1949)Google Scholar
  33. Wigglesworth, V. B.: Structural lipids in the insect cuticle and the function of oenocytes. Tissue Cell 2, 155–179 (1970)Google Scholar
  34. Wigglesworth, V. B.: Bound lipid in the tissue of mammal and insect: a new histochemical method. J. Cell Sci. 8, 709–725 (1971)Google Scholar
  35. Whistler, R. L., Schweiger, R.: Preparation of D-arabinose from D-glucose with hypochlorite. J. Amer. chem. Soc. 81, 5190–5192 (1959)Google Scholar
  36. Whistler, R. L., Yagi, K.: Further application of the hypochlorite method of chain shortening in the carbohydrate series. J. Org. Chem. 26, 1050–1052 (1961)Google Scholar
  37. Wright, N. C.: The action of hypochlorites on amino-acids and proteins. The effect of acidity and alkalinity. Biochem. J. 30, 1661–1667 (1936)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Peter J. Stoward
    • 1
    • 2
  1. 1.Department of AnatomyUniversity of DundeeU.K.
  2. 2.Department of AnatomyMedical Sciences InstituteDundeeU.K.

Personalised recommendations