Skip to main content
Log in

The thermal conductivity and heat capacity of gaseous argon

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents new absolute measurements of the thermal conductivity and of the thermal diffusivity of gaseous argon obtained with a transient hot-wire instrument. We measured seven isotherms in the supercritical dense gas at temperatures between 157 and 324 K with pressures up to 70 MPa and densities up to 32 mol · L−1 and five isotherms in the vapor at temperatures between 103 and 142 K with pressures up to the saturation vapor pressure. The instrument is capable of measuring the thermal conductivity with an accuracy better than 1% and thermal diffusivity with an accuracy better than 5%. Heat capacity results were determined from the simultaneously measured values of thermal conductivity and thermal diffusivity and from the density calculated from measured values of pressure and temperature from an equation of state. The heat capacities presented in this paper, with a nominal accuracy of 5%, prove that heat capacity data can be obtained successfully with the transient hot wire technique over a wide range of fluid states. The technique will be invaluable when applied to fluids which lack specific heat data or an adequate equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Nieto de Castro and H. M. Roder, J. Res. Natl. Bur. Stand. (U.S.) 86:293 (1981).

    Google Scholar 

  2. H. M. Roder, C. A. Nieto de Castro, and U. V. Mardolcar, Int. J. Thermophys. 8:521 (1987).

    Google Scholar 

  3. U. V. Mardolcar, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 7:259 (1986).

    Google Scholar 

  4. J. C. G. Calado, U. V. Mardolcar, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, Physica 143A:314 (1987).

    Google Scholar 

  5. J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica 100A:349 (1980).

    Google Scholar 

  6. M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. 77:439 (1981).

    Google Scholar 

  7. A. A. Clifford, P. Gray, A. I. Johns, A. C. Scotts, and J. T. R. Watson, J. Chem. Soc. Faraday Trans. 77:2679 (1981).

    Google Scholar 

  8. E. N. Haran. G. C. Maitland, M. Mustafa, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 87:657 (1983).

    Google Scholar 

  9. J. Millat, M. Mustafa, M. Ross, W. A. Wakeham, and M. Zalaf, Physica 145A:461 (1987).

    Google Scholar 

  10. B. A. Younglove and H. J. Hanley, J. Phys. Chem. Ref. Data 15:1323 (1986).

    Google Scholar 

  11. H. M. Roder and C. A. Nieto de Castro, in Thermal Conductivity 20, D. P. H. Hasselman and J. R. Thomas, Jr., eds., (Plenum Publishing Co., New York, 1989), p. 173.

    Google Scholar 

  12. C. A. Nieto de Castro, B. Taxis, H. M. Roder, and W. A. Wakeham, Int. J. Thermophys. 9:293 (1988).

    Google Scholar 

  13. H. M. Roder and C. A. Nieto de Castro, Cryogenics 27:312 (1987).

    Google Scholar 

  14. C. A. Nieto de Castro, JSME Int. J. 31:387 (1988).

    Google Scholar 

  15. J. M. N. A. Fareleira and C. A. Nieto de Castro, High Temp-High Press, 1989, in press.

  16. H. M. Roder, J. Res. Natl. Bur. Stand. (U.S.) 86:457 (1981).

    Google Scholar 

  17. B. A. Younglove, J. Phys. Chem. Ref. Data 11:Suppl. 1 (1982).

    Google Scholar 

  18. H. M. Roder, R. A. Perkins, and C. A. Nieto de Castro, National Institute of Standards and Technology NISTIR 89-3902 (Oct. 1988).

  19. J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, J. Phys. Chem. Ref. Data 13:229 (1984).

    Google Scholar 

  20. A. G. Clarke and E. B. Smith, J. Chem. Phys. 48:3988 (1986).

    Google Scholar 

  21. H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44:1038 (1940).

    Google Scholar 

  22. H. L. Johnston and E. R. Grilly, J. Phys. Chem. 46:948 (1942).

    Google Scholar 

  23. V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, in Thermophysical Properties of Neon, Argon, Krypton and Xenon, T. B. Selover, Jr., ed. (Hemisphere, Washinton, D.C., 1988), p. 203.

    Google Scholar 

  24. N. J. Trappeniers, in Proc. 8th Symp. Thermophys. Prop. J. V. Sengers, ed. (ASME, New York, 1982), p. 232.

    Google Scholar 

  25. H. M. Roder, Int. J. Thermophys. 6:119 (1985).

    Google Scholar 

  26. J. V. Sengers and J. M. H. Levelt Sengers, in Progress in Liquid Physics, C. A. Croxton, ed. (John Wiley & Sons, New York, 1978), p. 103.

    Google Scholar 

  27. H. M. Roder, J. Res. Natl. Bur. Stand. (U.S.) 87:279 (1982).

    Google Scholar 

  28. B. J. Bailey and K. Kellner, Br. J. Appl. Phys. 18:1645 (1968).

    Google Scholar 

  29. B. J. Bailey and K. Kellner, Physica 31:444 (1968).

    Google Scholar 

  30. L. D. Ikenberry and S. A. Rice, J. Chem. Phys. 39:156 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roder, H.M., Perkins, R.A. & Nieto de Castro, C.A. The thermal conductivity and heat capacity of gaseous argon. Int J Thermophys 10, 1141–1164 (1989). https://doi.org/10.1007/BF00500568

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500568

Key words

Navigation