Skip to main content

Advertisement

Log in

Viscosity Measurements of Nitrogen and Argon at Temperatures from 90 K to 200 K and Pressures Up To 5 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Accurate thermophysical properties will be essential to select and evaluate cryogenic fluids. The viscosity data of common cryogenic fluids was scattered below 200 K. To verify the data and reference correlations, in this work, the viscosity of nitrogen and argon in gas, liquid, and supercritical states were measured by using a vibrating-wire viscometer at temperatures between 90 K and 200 K and pressures between 0.3 MPa and 5 MPa. The standard uncertainty of the viscosity measurements was estimated to be 2.1 % over all temperature and pressure ranges. The results together with literature data were compared with the reference correlations. The results show good agreement between our measurements and those of the reference correlations within 2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Mia, M.A. Khan, N.R. Dhar, Int. J. Adv. Manuf. Technol. 93, 975 (2017). https://doi.org/10.1007/s00170-017-0566-9

    Article  Google Scholar 

  2. I.A. Burkov, A.V. Pushkarev, S.S. Ryabikin, A.V. Shakurov, D.I. Tsiganov, A.A. Zherdev, Int. J. Refrig. 133, 30 (2022). https://doi.org/10.1016/j.ijrefrig.2021.10.020

    Article  CAS  Google Scholar 

  3. W.J. Bailey, H. Arif, Cryogenics 32, 221 (1992). https://doi.org/10.1016/0011-2275(92)90271-B

    Article  ADS  Google Scholar 

  4. M.J. Tuinier, M. van Sint Annaland, G.J. Kramer, J.A.M. Kuipers, Chem. Eng. Sci. 65, 114 (2010). https://doi.org/10.1016/j.ces.2009.01.055

    Article  CAS  Google Scholar 

  5. C. Hilbert, U. Ghoshal, H. Kroger, J.S. Martens, V.M. Hietala, T.A. Plut, Appl. Phys. Lett. 64, 2442 (1994). https://doi.org/10.1063/1.111593

    Article  ADS  CAS  Google Scholar 

  6. D. Babikova, A. Petrov, I.O.P. Conf, Ser. Mater. Sci. Eng. 779, 012010 (2020). https://doi.org/10.1088/1757-899X/779/1/012010

    Article  CAS  Google Scholar 

  7. R. Xue, L. Chen, X. Zhong, X. Liu, S. Chen, Y. Hou, Cryogenics 97, 144 (2019). https://doi.org/10.1016/j.cryogenics.2018.09.010

    Article  ADS  CAS  Google Scholar 

  8. A.A. Sam, P. Ghosh, Cryogenics 82, 1 (2017). https://doi.org/10.1016/j.cryogenics.2017.01.004

    Article  ADS  CAS  Google Scholar 

  9. R.L. Oonk, D.C. Hustvedt, in Advances in Cryogenic Engineering, vol. 31, ed. by R.W. Fast (Springer, Boston, 1986), pp.415–422

    Chapter  Google Scholar 

  10. C.E. Ejim, M.A. Rahman, A. Amirfazli, B.A. Fleck, Fuel 89, 1872 (2010). https://doi.org/10.1016/j.fuel.2010.03.005

    Article  CAS  Google Scholar 

  11. D.E. Diller, Phys. A Stat. Mech. Appl. 119, 92 (1983). https://doi.org/10.1016/0378-4371(83)90149-8

    Article  Google Scholar 

  12. S. Förster, Cryogenics 3, 176 (1963). https://doi.org/10.1016/0011-2275(63)90012-2

    Article  ADS  Google Scholar 

  13. W. Grevendonk, W. Herreman, A. De Bock, Physica 46, 600 (1970). https://doi.org/10.1016/0031-8914(70)90148-5

    Article  ADS  CAS  Google Scholar 

  14. J. Hellemans, H. Zink, O. Van Paemel, Physica 47, 45 (1970). https://doi.org/10.1016/0031-8914(70)90098-4

    Article  ADS  CAS  Google Scholar 

  15. W.M. Haynes, Physica 67(3), 440 (1973). https://doi.org/10.1016/0031-8914(73)90162-6

    Article  ADS  CAS  Google Scholar 

  16. B.Y. Baharudin, D.A. Jackson, P.E. Schoen, J. Rouch, Phys. Lett. A 51, 409 (1975). https://doi.org/10.1016/0375-9601(75)90750-1

    Article  ADS  Google Scholar 

  17. A. De Bock, W. Grevendonk, W. Herreman, Physica 37, 227 (1967). https://doi.org/10.1016/0031-8914(67)90153-X

    Article  ADS  Google Scholar 

  18. J. Hellemans, H. Zink, O. Van Paemel, Physica 46, 395 (1970). https://doi.org/10.1016/0031-8914(70)90013-3

    Article  ADS  CAS  Google Scholar 

  19. E.W. Lemmon, R.T. Jacobsen, Int. J. Thermophys. 25, 21 (2004). https://doi.org/10.1023/B:IJOT.0000022327.04529.f3

    Article  ADS  CAS  Google Scholar 

  20. J.T. Tough, W.D. McCormick, J.G. Dash, Rev. Sci. Instrum. 35, 1345 (2004). https://doi.org/10.1063/1.1718741

    Article  ADS  Google Scholar 

  21. W. Ruesink, J.P. Harrison, A. Sachrajda, J. Low Temp. Phys. 70, 393 (1988). https://doi.org/10.1007/BF00682788

    Article  ADS  CAS  Google Scholar 

  22. D.C. Carless, H.E. Hall, J.R. Hook, J. Low Temp. Phys. 50, 583 (1983). https://doi.org/10.1007/BF00683497

    Article  ADS  CAS  Google Scholar 

  23. T. Retsina, S.M. Richardson, W.A. Wakeham, Appl. Sci. Res. 43, 127 (1986). https://doi.org/10.1007/BF00386040

    Article  CAS  Google Scholar 

  24. T. Retsina, S.M. Richardson, W.A. Wakeham, Appl. Sci. Res. 43, 325 (1987). https://doi.org/10.1007/BF00540567

    Article  Google Scholar 

  25. A.A.H. Pádua, J.M.N.A. Fareleira, J.C.G. Calado, W.A. Wakeham, Int. J. Thermophys. 17, 781 (1996). https://doi.org/10.1007/BF01439190

    Article  ADS  Google Scholar 

  26. M.E. Kandil, K.N. Marsh, A.R.H. Goodwin, J. Chem. Eng. Data 50, 647 (2005). https://doi.org/10.1021/je049636m

    Article  CAS  Google Scholar 

  27. J. Wilhelm, E. Vogel, J.K. Lehmann, W.A. Wakeham, Int. J. Thermophys. 19(2), 391 (1998). https://doi.org/10.1023/A:1022505209226

    Article  CAS  Google Scholar 

  28. X. Meng, J. Zhang, J. Wu, J. Chem. Eng. Data 56, 4956 (2011). https://doi.org/10.1021/je200854k

    Article  CAS  Google Scholar 

  29. R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000). https://doi.org/10.1063/1.1349047

    Article  ADS  CAS  Google Scholar 

  30. M.E. Kandil, (University of Canterbury, Christchurch, 2005), p. 18

  31. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences. (McGraw-Hill, Boston, 2003), p. 104–106

  32. C. Tegeler, R. Span, W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999). https://doi.org/10.1063/1.556037

    Article  ADS  CAS  Google Scholar 

  33. E. Lassner, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, 1st edn. (Kluwer Academic/Plenum Publishers, New York, 1999), p.324

    Book  Google Scholar 

  34. D.W. Gough, G.P. Matthews, E.B. Smith, J. Chem. Soc. Faraday Trans. 1 72, 645 (1976). https://doi.org/10.1039/F19767200645

    Article  CAS  Google Scholar 

  35. J.T.F. Kao, R. Kobayashi, J. Chem. Phys. 47, 2836 (1967). https://doi.org/10.1063/1.1712306

    Article  ADS  CAS  Google Scholar 

  36. H.L. Johnston, K.E. McCloskey, J. Phys. Chem. 44, 1038 (1940). https://doi.org/10.1021/j150405a004

    Article  CAS  Google Scholar 

  37. J.A. Gracki, G.P. Flynn, J. Ross, J. Chem. Phys. 44, 3856 (1969). https://doi.org/10.1063/1.1672602

    Article  ADS  Google Scholar 

  38. A.G. Clarke, E.B. Smith, J. Chem. Phys. 48, 3988 (1968). https://doi.org/10.1063/1.1669725

    Article  ADS  CAS  Google Scholar 

  39. H.L. Johnston, E.R. Grilly, J. Phys. Chem. 46, 948 (1942). https://doi.org/10.1021/j150422a019

    Article  CAS  Google Scholar 

  40. W.M. Haynes, D.E. Diller, H.M. Roder, Cryogenics 27, 348 (1987). https://doi.org/10.1016/0011-2275(87)90206-2

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 51976164).

Author information

Authors and Affiliations

Authors

Contributions

XZ performed the measurements, prepared the figures and tables, and wrote the main manuscript text. WQ contributed to experimental measurements and made modifications to the manuscript. ZL contributed to experimental measurements and carried out the evaluation of the literature data. JW and XM proposed the research content and made modifications to the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xianyang Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Qin, W., Li, Z. et al. Viscosity Measurements of Nitrogen and Argon at Temperatures from 90 K to 200 K and Pressures Up To 5 MPa. Int J Thermophys 45, 30 (2024). https://doi.org/10.1007/s10765-023-03325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03325-9

Keywords

Navigation