Skip to main content
Log in

Comparison of the presynaptic actions of botulinum toxin and β-bungarotoxin on neuromuscular transmission

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Comparison was made between the presynaptic actions of type A botulinum toxin (BoTX) and β-bungarotoxin (β-BuTX) on isolated nerve-muscle preparations. On the mouse and rat diaphragms, BoTX is about 100 and 10 times more potent than β-BuTX, respectively, whereas on the chick biventer cervicis muscle, β-BuTX is 3–10 times more potent. The paralytic actions of both toxins are preceded by latency, antagonized by high concentrations of calcium or magnesium and by deficiency of calcium, accelerated by high frequencies of nerve stimulation and retarded by decrease of temperature. The paralytic actions of BoTX as well as β-BuTX appear to take place in two processes: first, binding with their respective target sites and second, the inhibitory changes of the target macromolecule of the nerve terminals leading to failure of transmitter release. The latter process is not reversed by washing but is retarded greatly by low calcium, high magnesium or low temperature. Binding of β-BuTX is faster than that of BoTX.

Miniature end-plate potentials of unreduced amplitude could be recorded in junctions blocked by either toxin. End-plate potentials were depressed and the successive decline of their amplitude during train of pulses was abolished by both toxins.

In contrast to the initial facilitatory actions after β-BuTX, BoTX has no sign of facilitation such as increase of the frequency of miniature end-plate potential, restoration of neuromuscular transmission, increase of quantal content of end-plate potential and occurrence of spontaneous fasciculations in low calcium media. Another difference between the two toxins is the typical Wedensky inhibition on repetitive stimulation and post-tetanic potentiation in β-BuTX paralysed muscles. By contrast, after BoTX, sustained contraction without post-tetanic potentiation was observed.

The two toxins show a mutual antagonism especially when β-BuTX is added before or simultaneously with BoTX. The action of the latter was completely antagonized in the presence of β-BuTX. Once it is bound to the target site, however, BoTX seems not to be antagonized by β-BuTX. On the other hand, BoTX appears to be able to retard the effect of bound β-BuTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambache, N.: The peripheral action of Cl. botulinum toxin. J. Physiol. (Lond.) 108, 127–141 (1949)

    Google Scholar 

  • Ambache, N.: A further survey of the action of Clostridium botulinum toxin upon different types of autonomic nerve fibre. J. Physiol (Lond.) 113, 1–17 (1951)

    Google Scholar 

  • Ambache, N.: Effect of botulinum toxin upon the superior cervical ganglion. J. Physiol. (Lond.) 116, 9p (1952)

  • Brooks, V. B.: An intracellular study of the action of repetitive nerve volleys and of botulinum toxin on miniature end-plate potentials. J. Physiol. (Lond.) 134, 264–277 (1956)

    Google Scholar 

  • Bülbring, E.: Observations on the isolated phrenic nerve diaphragm preparation of the rat. Brit. J. Pharmacol. 1, 38–61 (1946)

    Google Scholar 

  • Burgen, A. S. V., Dickens, F., Zatman, L. J.: The action of botulinum toxin on the neuromuscular junction. J. Physiol. (Lond.) 109, 10–24 (1949)

    Google Scholar 

  • Castillo, J. del, Katz, B.: Quantal components of the end-plate potential. J. Physiol. (Lond.) 124, 560–573 (1954)

    Google Scholar 

  • Chang, C. C., Chen, T. F., Lee, C. Y.: Studies of the presynaptic effect of β-bungarotoxin on neuromuscular transmission. J. Pharmacol. exp. Ther. 184, 339–345 (1973a)

    Google Scholar 

  • Chang, C. C., Huang, M. C., Lee, C. Y.: Mutual antagonism between botulinum toxin and β-bungarotoxin. Nature (Lond.) 243, 166–167 (1973b)

    Google Scholar 

  • Chang, C. C., Lee, C. Y.: Isolation of neurotoxins from the venom of Bungarus multicinctus and their mode of neuromuscular blocking action. Arch. int. Pharmacodyn. 144, 241–257 (1963)

    Google Scholar 

  • Chen, I. L., Lee, C. Y.: Ultrastructural changes in the motor nerve terminals caused by β-bungarotoxin. Virchows Arch., Abt. B Zellpath. 6, 318–325 (1970)

    Google Scholar 

  • Ginsborg, B. L., Warriner, J.: The isolated chick biventer cervicis nerve-muscle preparation. Brit. J. Pharmacol. 15, 410–411 (1960)

    Google Scholar 

  • Holman, M. E., Spitzer, N. C.: Action of botulinum toxin on transmission from sympathetic nerves to the vas deferens. Brit. J. Pharmacol. 47, 431–433 (1973)

    Google Scholar 

  • Hubbard, J. L., Llinás, R., Quastel, D. M. J.: Electrophysiological analysis of synaptic transmission. Baltimore: The Williams & Wilkins Co. 1969

    Google Scholar 

  • Hughes, R., Whaler, B. C.: Influence of nerve ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. Botulinum type A toxin. J. Physiol. (Lond.) 160, 221–233 (1962)

    Google Scholar 

  • Kupfer, C.: Selective block of synaptic transmission in ciliary ganglion by type A botulinus toxin in rabbits. Proc. Soc. exp. Biol. (N.Y.) 99, 474–476 (1958)

    Google Scholar 

  • Lamanna, C., Sakaguchi, G.: Botulina toxins and the problem of nomenclature of simple toxins. Bact. Rev. 32, 242–249 (1971)

    Google Scholar 

  • Lee, C. Y., Chang, C. C.: Modes of actions of purified toxins from elapid venoms on neuromuscular transmission. Mem. Inst. Butantan Simp. Int. 33, 555–572 (1966)

    Google Scholar 

  • Lee, C. Y., Chang, S. L., Kau, S. T., Luh, S. H.: Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components. J. Chromatogr. 72, 71–82 (1972)

    Google Scholar 

  • Lee, C. Y., Cheng, L. F.: Species differences in susceptibility to elapid venoms. Toxicon 7, 89–93 (1969)

    Google Scholar 

  • Simpson, L. L.: Ionic requirements for the neuromuscular blocking action of botulinum toxin: Implications with regard to synaptic transmission. Neuropharmacol. 10, 673–684 (1971)

    Google Scholar 

  • Simpson, L. L.: The interaction between divalent cations and botulinum toxin type A in the paralysis of the rat phrenic nerve-hemidiaphragm preparation. Neuropharmacol. 12, 165–176 (1973).

    Google Scholar 

  • Spitzer, N.: Miniature end-plate potentials at mammalian neuromuscular junctions poisoned by botulinum toxin. Nature New Biol. 237, 26–27 (1972)

    Google Scholar 

  • Thesleff, S.: Supersensitivity of skeletal muscle produced by botulinum toxin. J. Physiol. (Lond.) 151, 598–607 (1960)

    Google Scholar 

  • Zacks, S. L., Metzger, J. F., Smith, C. W., Blumberg, J. M.: Localization of ferritinlabelled botulinus toxin in the neuromuscular junction of the mouse. J. Neuropath. exp. Neurol. 21, 610–633 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C.C., Huang, M.C. Comparison of the presynaptic actions of botulinum toxin and β-bungarotoxin on neuromuscular transmission. Naunyn-Schmiedeberg's Arch. Pharmacol. 282, 129–142 (1974). https://doi.org/10.1007/BF00499028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00499028

Key words

Navigation