Skip to main content
Log in

Depression of the Evoked Quantal Acetylcholine Secretion in Frog Neuromuscular Junction by Phospholipases A2 from the Venom of Steppe Viper Vipera ursiniirenardi

  • ARTICLES
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In this work we studied the influence of phospholipase A2 vurtoxin and its homologue lacking enzymatic activity (Vur-S49), isolated from the venom of steppe viper Vipera ursinii renardi, on the amplitude and temporal parameters of spontaneous and evoked endplate currents (EPCs) in the neuromuscular junction of frog Rana ridibunda. The experiments showed that both vurtoxin and Vur-S49 reduce the EPC quantal content. The amplitude and time course of spontaneous (one-quantal) signals remained unchanged, suggesting that these proteins do not block nicotinic acetylcholine receptors (nAChRs) on the postsynaptic membrane. Depressing effect in the presence of enzymatically inactive Vur-S49 suggested that the decrease in the EPC quantal content in the presence of these proteins cannot be explained exclusively by phospholipolytic activity manifested by vurtoxin. On the basis of our previous data we suggested an interaction of the proteins studied with presynaptic α7 nAChRs. Selective antagonist of α7 nicotinic receptors methyllycaconitine (MLA) reduced the EPC quantal content as well. Depressing action of MLA on the evoked secretion of acetylcholine implies the involvement of the presynaptic α7 nAChRs in the regulation of the evoked quantal secretion in the frog neuromuscular junction. However, in the presence of MLA the effects of vurtoxin and Vur-S49 on the EPC quantal content in the nerve-muscle preparation remained unchanged. The data obtained suggest that presynaptic effects of the proteins studied are not directed at α7 nAChRs but could be mediated by interaction with some other synaptic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tsetlin V.I., Hucho F. 2004. Snake and snail toxins acting on nicotinic acetylcholine receptors: Fundamental aspects and medical applications. FEBS Lett. 557, 9–13.

    Article  CAS  PubMed  Google Scholar 

  2. Kasheverov I.E., Utkin Y.N., Tsetlin V.I. 2009. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors. Curr. Pharm. Des. 15, 2430–2452.

    Article  CAS  PubMed  Google Scholar 

  3. Tsetlin V.I. 2015. Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: Pharmacological tools and endogenous modulators. Trends Pharmacol. Sci. 36, 109–123.

    Article  CAS  PubMed  Google Scholar 

  4. McArdle J.J., Lentz T.L., Witzemann V., Schwarz H., Weinstein S.A., Schmidt J.J. 1999. Waglerin-1 selectively blocks the epsilon form of the muscle nicotinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 289, 543–550.

    CAS  PubMed  Google Scholar 

  5. Utkin Y.N., Weise C., Kasheverov I.E., Andreeva T.V., Kryukova E.V., Zhmak M.N., Starkov V.G., Anh H.N., Bertrand D., Ramerstorfer J., Sieghart W., Thompson A.J., Lummis S.C.R., Tsetlin V.I. 2012. Azemiopsin from Azemiops feae viper venom, a novel polypeptide ligand of nicotinic acetylcholine receptor. J. Biol. Chem. 287, 27 079–27 086.

    Article  CAS  Google Scholar 

  6. Vulfius C.A., Starkov V.G., Andreeva T.V., Tsetlin V.I., Utkin Y.N. 2015. New antagonosts of nicotinic cholinoreceptors – proteins from venom of Viperidae snakes. DAN (Rus.). 461, 604–607.

    Google Scholar 

  7. Montecucco C., Rossetto O., Caccin P., Rigoni M., Carli L., Morbiato L., Muraro L., Paoli M. 2009. Different mechanisms of inhibition of nerve terminals by botulinum toxin and snake presynaptic neurotoxins. Toxicon. 54, 561–564.

    Article  CAS  PubMed  Google Scholar 

  8. Warrell D.A. 1989. Snake venoms in science and clinical medicine. 1. Russell’s viper: Biology, venom and treatment of bites. Trans. Roy. Soc. Trop. Med. Hyg. 3, 732–740.

    Article  Google Scholar 

  9. Rossetto O., Morbiato L., Caccin P., Rigoni M., Montecucco C. 2006. Presynaptic enzymatic neurotoxins. J. Neurochem. 97, 1534–1545.

    Article  CAS  PubMed  Google Scholar 

  10. Pungerčar J., Križaj I. 2007. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon. 50, 871–892.

    Article  CAS  PubMed  Google Scholar 

  11. Vardjan N., Mattiazzi M., Rowan E.G., Križaj I., Petrovič U., Petan T. 2013. Neurotoxic phospholipase A2 toxicity model: An insight from mammalian cells. Commun. Integr. Biol. doi https://doi.org/10.4161/cib.23600

  12. Kini R.M., Evans H.J. 1989. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon. 27, 613–635.

    Article  CAS  PubMed  Google Scholar 

  13. Vulfius C.A., Kasheverov I.E., Starkov V.G., Osipov A.V., Andreeva T.V., Filkin S.Yu., Gorbacheva E.V., Astashev M.E., Tsetlin V.I., Utkin Y.N. 2014. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2. PLoS One. doi https://doi.org/10.1371/journal.pone.0115428

  14. Rufini S., Cesaroni P., Desideri A., Farias R., Gubensek F., Gutiérrez. J.M., Luly P., Massoud R., Morero R., Pedersen J.Z. 1992. Calcium ion independent membrane leakage induced by phospholipase-like myotoxins. Biochemistry. 31, 12424–12430.

    Article  CAS  PubMed  Google Scholar 

  15. Smith T.G., Barker J.L., Smith B.M. & Colburn T.R. 1980. Voltage clamping with microelectrodes. J. Neurosci. Methods 3, 105–128.

    Article  PubMed  Google Scholar 

  16. Khaziev E., Samigullin D., Zhilyakov N., Fatikhov N., Bukharaeva E., Verkhratsky A., Nikolsky E. 2016. Acetylcholine-induced inhibition of presynaptic calcium signals and transmitter release in the frog neuromuscular junction. Front. Physiol. 7, 621. doi https://doi.org/10.3389/fphys.2016.00621

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kovyazina I.V., Tsentsevitskii A.N., Nikolskii E.E. 2016. Presynaptic nicotine cholinoreceptors modulate the conductance velocity in motor terminals at a high-frequency synaptic activity. DAN (Rus.). 468, 586–588.

    Google Scholar 

  18. Fedorin V.V., Balezina O.P. 2008. The involvement of N-cholinoreceptors of neuronal type in the regulation of the mediator release in mouse neuromuscular synapses. Neurokhimia (Rus.). 25, 99–104.

    Google Scholar 

  19. Gaidukov A.E., Bogacheva P.O., Tarasova E.O., Balezina O.P. 2014. Mechanism of the acetylcholine release suppression in mouse motor synapses. Acta naturae (Rus.). 6 (4), 117–122.

  20. Petrov K.A., Girard E., Nikitashina A.D., Colasante C., Bernard V., Nurullin L., Leroy J., Samigullin D., Colak O., Nikolsky E., Plaud B., Krejci E. 2014. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase. J. Neurosci. 34, 11870–11883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Séguéla P., Wadiche J., Dineley-Milller K., Dani J.A., Patrick J.W. 1993. Molecular cloning, functional properties, and distribution of rat brain α7: A nicotinic cationic channel highly permeable to calcium. J. Neurosci. 13, 596–604.

    Article  PubMed  Google Scholar 

  22. Castro N.G., Albuquerque E.X. 1995. The α-bungarotoxin-sensitive hippocampal nicotinic acetylcholine receptor has a high calcium permeability. Biophys. J. 68, 516–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsuneki H., Klink R., Léna C., Korn H., Changeux J.P. 2000. Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur. J. Neurosci. 12, 2475–2485.

    Article  CAS  PubMed  Google Scholar 

  24. Rogers M., Sargent P.B. 2003. Rapid activation of presynaptic nicotinic acetylcholine receptors by nerve-released transmitter. Eur. J. Neurosci. 18, 2946–2956.

    Article  PubMed  Google Scholar 

  25. Shen J.X., Yakel J.L. 2009. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacol. Sin. 30, 673–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project nos. 15-04-01843 and 17-04-00690) and by the subsidy in the frames of the Government Support for the Kazan (Privolzhskii) Federal university aimed at enhancing its competitiveness among world leading scientific and educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kovyazina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Dunina-Barkovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovyazina, I.V., Kopylova, N.V., Utkin, Y.N. et al. Depression of the Evoked Quantal Acetylcholine Secretion in Frog Neuromuscular Junction by Phospholipases A2 from the Venom of Steppe Viper Vipera ursiniirenardi. Biochem. Moscow Suppl. Ser. A 13, 78–84 (2019). https://doi.org/10.1134/S1990747819010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819010069

Keywords:

Navigation