Skip to main content
Log in

Distribution of NT-IR perikarya in the brain of the guinea pig with special reference to cardiovascular centers in the medulla oblongata

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

The occurrence and distribution of neurotensin-immunoreactive (NT-IR) perikarya was studied in the central nervous system of the guinea pig using a newly raised antibody (KN 1). Numerous NT-IR perikarya were found in the nuclei amygdaloidei, nuclei septi interventriculare, hypothalamus, nucleus parafascicularis thalami, substantia grisea centralis mesencephali, ventral medulla oblongata, nucleus solitarius and spinal cord. The distribution of NT-IR perikarya was similar to that previously described in the rat and monkey. In the gyrus cinguli, hippocampus and nucleus olfactorius, though, no NT-IR neurons were detected in this investigation. Additional immunoreactive perikarya, however, were observed in areas of the ventral medulla oblongata, namely in the nucleus paragigantocellularis, nucleus retrofacialis and nucleus raphe obscurus.

The relevance of the NT-IR perikarya within the ventral medulla oblongata is discussed with respect to other neuropeptides, which are found in this area, and to cardiovascular regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

abl:

nucleus amygdaloideus basalis lateralis

abm:

nucleus amygdaloideus basalis medialis

acc:

nucleus amygdaloideus centralis

aco:

nucleus amygdaloideus corticalis

ahp:

area posterior hypothalami

ala:

nucleus amygdaloideus lateralis anterior

alp:

nucleus amygdaloideus lateralis posterior

ame:

nucleus amygdaloideus medialis

atv:

area tegmentalis ventralis

bst:

nucleus proprius striae terminalis

CA:

commissura anterior

CC:

corpus callosum

cgld:

corpus geniculatum laterale dorsale

cglv:

corpus geniculatum laterale ventrale

cgm:

corpus geniculatum mediale

CHO:

chiasma opticum

CI:

capsula interna

co:

nucleus commissuralis

cod:

nucleus cochlearis dorsalis

cp:

nucleus caudatus/Putamen

cs:

colliculus superior

cu:

nucleus cuneatus

dmh:

nucleus dorsomedialis hypothalami

DP:

decussatio pyramidum

em:

eminentia mediana

ent:

cortex entorhinalis

epi:

epiphysis

FLM:

fasciculus longitudinalis medialis

fm:

nucleus paraventricularis hypothalami pars filiformis

FX:

fornix

gd:

gyrus dentatus

gp:

globus pallidus

gr:

nucleus gracilis

hl:

nucleus habenulae lateralis

hm:

nucleus habenulae medialis

hpe:

hippocampus

ift:

nucleus infratrigeminalis

io:

oliva inferior

ip:

nucleus interpeduncularis

LM:

lemniscus medialis

MT:

tractus mamillo-thalamicus

na:

nucleus arcuatus

nls:

nucleus lateralis septi

nms:

nucleus medialis septi

npca:

nucleus proprius commissurae anterioris

ns:

nucleus solitarius

n III:

nucleus nervi oculomotorii

nt V:

nucleus tractus spinalis nervi trigemini

ntm:

nucleus mesencephalicus nervi trigemini

osc:

organum subcommissurale

P:

tractus cortico-spinalis

PC:

pedunculus cerebri

PCI:

pedunculus cerebellaris inferior

pir:

cortex piriformis

pol:

area praeoptica lateralis

pom:

area praeoptica medialis

prt:

area praetectalis

pt:

nucleus parataenialis

pvh:

nucleus paraventricularis hypothalami

pvt:

nucleus paraventricularis thalami

r:

nucleus ruber

re:

nucleus reuniens

rgi:

nucleus reticularis gigantocellularis

rl:

nucleus reticularis lateralis

rm:

nucleus raphe magnus

ro:

nucleus raphe obscurus

rp:

nucleus raphe pallidus

rpc:

nucleus reticularis parvocellularis

rpgc:

nucleus reticularis paragigantocellularis

sch:

nucleus suprachiasmaticus

SM:

stria medullaris thalami

snc:

substantia nigra compacta

snl:

substantia nigra lateralis

snr:

substantia nigra reticularis

ST:

stria terminalis

tad:

nucleus anterior dorsalis thalami

tam:

nucleus anterior medialis thalami

tav:

nucleus anterior ventralis thalami

tbl:

nucleus tuberolateralis

tc:

nucleus centralis thalami

tl:

nucleus lateralis thalami

tmd:

nucleus medialis dorsalis thalami

TO:

tractus opticus

TOL:

tractus olfactorium lateralis

tpo:

nucleus posterior thalami

tr:

nucleus reticularis thalami

trs:

nucleus triangularis septi

TS:

tractus solitarius

TS V:

tractus spinalis nervi trigemini

tvl:

nucleus ventrolateralis thalami

vmh:

nucleus ventromedialis hypothalami

vh:

ventral horn, Columna anterior

zi:

zona incerta

References

  • Adair JR, Hamilton BL, Scappaticci KA, Helke CJ, Gillis RA (1977) Cardiovascular responses to electrical stimulation of the medullary raphe area of the cat. Brain Res 128:141–145

    Google Scholar 

  • Andrezik JA, Chan-Palay V, Palay SL (1981) The nucleus paragigantocellularis lateralis in the rat. Anat Embryol 161:373–390

    Google Scholar 

  • Beitz AJ (1982) The sites of origin of brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J Neurosci 2:829–842

    Google Scholar 

  • Beitz AJ, Shepard RD, Wells WE (1983) The periaqueductal grayraphe magnus projection contains somatostatin, neurotensin and serotonin but not cholecystokinin. Brain Res 261:132–137

    Google Scholar 

  • Carraway R, Leeman S (1973) The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem 248:6854–6861

    Google Scholar 

  • Carraway R, Leeman SE (1975) The amino acid sequence of a hypothalamic peptide, neurotensin. J Biol Chem 250: 1907–1911

    Google Scholar 

  • Caverson MM, Ciriello J, Calaresu FR (1983) Direct pathway from cardiovascular neurons in the ventrolateral medulla to the region of the intermediolateral nucleus of the upper thoracic cord: an anatomical and electrophysiological investigation in the cat. J Auton Nerv Syst 9:451–475

    Google Scholar 

  • Cechetto D, Ciriello J, Calaresu FR (1983) Afferent connections to cardiovascular sites in the amygdala: a horseradish peroxidase study in the cat. J Auton Nerv Syst 8:97–110

    Google Scholar 

  • Clineschmidt BV, McGuffin JC (1977) Neurotensin administered intracisternally inhibits responsiveness of mice to noxious stimuli. Eur J Pharmacol 46:395–396

    Google Scholar 

  • DeGroat WC, Nadelhaft J, Morgan C, Schauble T (1979) The central origin of efferent pathways in the carotid sinus nerve of the cat. Science 205:1017–1019

    Google Scholar 

  • Dev NB, Loeschke HH (1979) Topography of the respiratory and circulatory responses to acetylcholine and nicotine on the ventral surface of the medulla oblongata. Pflügers Arch 379:19–27

    Google Scholar 

  • Errington ML, Dashwood MR (1979) Projections to the ventral surface of the cat brainstem demonstrated by horseradish peroxidase. Neurosci Lett 12:153–158

    Google Scholar 

  • Ervin GN, Birkemo LS, Nemeroff CB, Prange AJ Jr (1981) Neurotensin blocks certain amphetamine-induced behaviours. Nature 291:73–76

    Google Scholar 

  • Flórez J, Mediavilla A (1977) Respiratory and cardiovascular effects of metenkephalin applied to the ventral surface of the brain stem. Brain Res 138:585–590

    Google Scholar 

  • Forssmann WG, Pickel VM, Reinecke M, Hock D, Metz J (1981) Immunohistochemistry and immunocytochemistry of nervous tissue. In: Heym Ch, Forssmann WG (eds) Techniques in neuroanatomical research. Springer, Berlin Heidelberg New York, pp 171–205

    Google Scholar 

  • Gorgas K, Reinecke M, Weihe E, Forssmann WG (1983) Neurotensin and substance P immunoreactive nerve endings in the guinea pig carotid sinus and their ultrastructural counterparts. Anat Embryol 167:347–354

    Google Scholar 

  • Hamilton RB, Ellenberger H, Liskowsky D, Schniedermann N (1981) Parabrachial area as mediator of bradycardia in rabbits. J Auton Nerv Syst 4:261–281

    Google Scholar 

  • Hara Y, Shiosaka S, Senba E, Sakanaka M, Inagaki S, Takagi H, Kawai Y, Takatsuki K, Matsuzaki T, Tohyama M (1982) Ontogeny of the neurotensin-containing neuron system of the rat: immunohistochemical analysis. I. Forebrain and diencephalon. J Comp Neurol 208:177–195

    Google Scholar 

  • Hökfelt T, Ljungdahl A, Steinbusch H, Verhofstad A, Nilsson G, Brodin E, Pernow B, Goldstein M (1978) Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxy-tryptamine-containing neurons in the rat central nervous system. Neuroscience 3:517–538

    Google Scholar 

  • Ibata Y, Fukui K, Okamura H, Kawakami T, Tanaka M, Obata HL, Tsuto T, Terubayashi H, Yanaihara C, Yanaihara N (1983) Coexistence of dopamine and neurotensin in hypothalamic arcuate and periventricular neurons. Brain Res 269: 177–179

    Google Scholar 

  • Inagaki S, Shinoda K, Kubota Y, Shiosaka S, Matsuzaki T, Tohyama M (1983) Evidence for the existence of a neurotensin-containing pathway from the endopiriform nucleus and the anterior olfactory nucleus and nucleus of diagonal band (Broca) of the rat. Neuroscience 8:487–493

    Google Scholar 

  • Iversen LL, Iversen SD, Bloom F, Douglas C, Brown M, Vale W (1978) Calcium-dependent release of somatostatin and neurotensin from rat brain in vitro. Nature 273:161–163

    Google Scholar 

  • Jennes L, Stumpf WE, Kalivas PW (1982) Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 210:211–224

    Google Scholar 

  • Kahn D, Abrams GM, Zimmermann EA, Carraway R, Leeman SE (1980) Neurotensin neurons in the rat hypothalamus: an immunocytochemical study. Endocrinology 107:47–54

    Google Scholar 

  • Kalivas PW, Burgess SK, Nemeroff CB, Prange AJ (1983) Behavioral and neurochemical effects of neurotensin microinjection into the ventral tegmentel area of the rat. Neuroscience 8:495–505

    Google Scholar 

  • Kataoka K, Mizuno N, Frohmann LA (1979) Regional distribution of immunoreactive neurotensin in monkey brain. Brain Res Bull 4:57–60

    Google Scholar 

  • Kobayashi RM, Brown M, Vale W (1977) Regional distribution of neurotensin and somatostatin in rat brain. Brain Res 126:584–588

    Google Scholar 

  • Langhorst P, Schulz B, Schulz G, Lambertz M (1983) Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighboring neurons influenced by cardiovascular and respiratory afferents. J Auton Nerv Syst 9:411–432

    Google Scholar 

  • Levine AS, Kneip J, Grace M, Morley JE (1983) Effects of centrally administered neurotensin on multiple feeding paradigms. Pharmacol Biochem Behav 18:19–23

    Google Scholar 

  • Loewy AD, McKellar S (1980) The neuroanatomical basis of cardiovascular control. Fed Proc 39:2495–2503

    Google Scholar 

  • Loewy AD, Sawyer WB (1982) Substance P antagonist inhibits vasomotor responses elicited from ventral medulla in rat. Brain Res 245:379–383

    Google Scholar 

  • Loewy AD, Wallach JH, McKellar S (1981) Efferent connections of the central medulla oblongata in the rat. Brain Res Rev 3:63–80

    Google Scholar 

  • Lovick TA, Hunt SP (1983) Substance P-immunoreactive and serotonin-containing neurones in the ventral brainstem of the cat. Neurosci Lett 36:223–228

    Google Scholar 

  • McCarthy PS, Walker RJ, Yajimat H, Kitagawa K, Woodruff GN (1979) The action of neurotensin on neurones in the nucleus accumbens and cerebellum of the rat. Gen Pharmacol 10:331–333

    Google Scholar 

  • Miletić V, Rancić M (1979) Neurotensin excites cat spinal neurones located in laminae I–III. Brain Res 169:600–604

    Google Scholar 

  • Minagawa H, Shiosaka S, Inagaki S, Sakanaka M, Taktsuki K, Ishimoto I, Senba E, Kawai Y, Hara Y, Matsuzaki T, Tohyama M (1983) Ontogeny of neurotensin-containing neuron system of the rat: immunohistochemical analysis. II. Lower brain stem. Neuroscience 8:467–486

    Google Scholar 

  • Morley JE, Levine AS, Oken MM, Grace M, Kneip J (1982) Neuropeptides and thermoregulation: the interactions of bombesin, neurotensin, TRH, somatostatin, naloxone and prostaglandins. Peptides 3:1–6

    Google Scholar 

  • Nemeroff CB, Bissette G, Prange AJ Jr, Loosen PT, Lipton MA (1977) Neurotensin: central nervous system effects of a hypothalamic peptide. Brain Res 128:485–496

    Google Scholar 

  • Oishi M, Inagaki Ch, Takaori S, Yajima H, Akazawa Y (1982) Attenuation of triphasic blood pressure responses induced by shortening of amino acid sequences of neurotensin. Neuropeptides 2:279–286

    Google Scholar 

  • Osbahr AJ III, Nemeroff CB, Luttinger D, Mason GA, Prange AJ Jr (1981) Neurotensin-induced antinociception in mice: antagonism by thyrotropin-releasing hormone. J Pharmacol Exp Ther 217:645–651

    Google Scholar 

  • Osumi Y, Nagasaka Y, Wang LH Fu, Fujiwara M (1978) Inhibition of gastric acid secretion and mucosal blood flow induced by intraventriculary applied neurotensin in rat. Life Sci 23: 2275–2280

    Google Scholar 

  • Quirion R (1983) Interactions between neurotensin and dopamine in the brain: an overview. Peptides 4:609–615

    Google Scholar 

  • Reches A, Burke RE, Jiang D, Wagner HR, Fahn S (1983) Neurotensin interacts with dopaminergic neurons in rat brain. Peptides 4:43–48

    Google Scholar 

  • Reinecke M, Forssmann WG, Thiekötter G, Triepel J (1983) Localization of neurotensin-immunoreactivity in the spinal cord and peripheral nervous system of the guinea pig. Neurosci Lett 37:37–42

    Google Scholar 

  • Schlaefke ME, See WR (1980) Ventral medullary surface stimulus responses in relation to ventilatory and cardiovascular effects. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 55–64

    Google Scholar 

  • Schläfke ME, Kille JF, Loeschke HH (1979) Elimination of central chemosensitivity by coagulation of a bilateral area on the ventral medullary surface in awake cats. Pflügers Arch 378: 231–241

    Google Scholar 

  • Schulz B, Lambertz M, Schulz G, Langhorst P (1983) Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighboring neurons influenced by somatosensory afferents. J Auton Nerv Syst 9:433–449

    Google Scholar 

  • Senba E, Shiosaka S, Hara Y, Inagaki S, Kawai Y, Tatatsuki K, Sakanaka M, Iida H, Takagi H, Minagawa H, Tohyama M (1982) Ontogeny of the Leucine-Enkephalin neuron system of the rat: immunohistochemical analysis. I. Lower brainstem. J Comp Neurol 205:341–359

    Google Scholar 

  • Seybold VS, Elde RP (1982) Neurotensin immunoreactivity in the superficial laminae of the dorsal horn of the rat: I. Light microscopic studies of cell bodies and proximal dendrites. J Comp Neurol 205:89–100

    Google Scholar 

  • Stanley BG, Hoebel BG, Leibowitz SF (1983) Neurotensin: effects of hypothalamic and intravenous injections on eating and drinking. Peptides 4:493–500

    Google Scholar 

  • Stanzione P, Zieglgänsberger W (1983) Action of neurotensin on spinal cord neurons in the rat. Brain Res 268:111–118

    Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd ed. Wiley, New York

    Google Scholar 

  • Stock G, Schmelz M, Knuepfer MM, Forssmann WG (1983) Functional and anatomic aspects of central nervous cardiovascular regulation. In: Ganten D, Pfaff D (eds) Central cardiovascular control. Springer, Berlin Heidelberg New York, pp 1–30

    Google Scholar 

  • Thiekötter G (1984) Neurotensin im Zentralnervensystem des Meerschweinchens. Eine Mapping-Studie. Dissertation Heidelberg

  • Triepel J, Thiekötter G, Elger K-H, Mader J, Kiemle I, Forssmann WG (1981) Immunohistochemical localization of glucagon, glicentin, VIP, somatostatin, and neurotensin in guinea pig brain. Neurosci Lett (Suppl) 7:S266

    Google Scholar 

  • Triepel J, Kiemle I, Mader J, Elger K-H, Thiekötter G, Weindl A, Forssmann WG (1982) Neuropeptide mapping of the brain stem in normal and colchicine-treated guinea pig. Neurosci Lett (Suppl) 10:S488

    Google Scholar 

  • Triepel J, Elger KH, Kiemle I, Mader J, Reinecke M, Thiekötter G, Weindl A, Forssmann WG (1984a) Neuropeptide in cardiovaskulären Zentren. Verh Anat Ges (in press)

  • Triepel J, Elger K-H, Kiemle I, Mader J, Shehab T, Thiekötter G, Forssmann WG (1984b) Somatostatin-like immunoreactive neurons and axons in the central nervous system of guinea pig, tupaia, and cat. University Press

  • Uhl GR, Snyder SH (1976) Regional and subcellular distribution of brain neurotensin. Life Sci 19:1827–1832

    Google Scholar 

  • Uhl GR, Snyder SH (1977) Neurotensin receptor binding, regional and subcellular distributions favour transmitter role. Eur J Pharmacol 41:89–91

    Google Scholar 

  • Uhl GR, Kuhar MJ, Snyder SH (1977) Neurotensin: Immunohistochemical localization in rat central nervous system. Proc Natl Acad Sci USA 74:4059–4063

    Google Scholar 

  • Uhl GR, Goodman RR, Snyder SH (1979) Neurotensin-containing cell bodies, fibers and nerve terminals in the brainstem of the rat: Immunohistochemical mapping. Brain Res 167:77–91

    Google Scholar 

  • Williams RG, Dockray GJ (1983) Distribution of Enkephalin-related peptides in rat brain: immunohistochemical studies using antisera to Met-Enkephalin and Met-Enkephalin Arg6Phe7. Neuroscience 9:563–586

    Google Scholar 

  • Williams JT, Katayama Y, North RA (1979) The action of neurotensin on single myenteric neurones. Eur J Pharmacol 59: 181–186

    Google Scholar 

  • Young WS III, Uhl GR, Kuhar MJ (1978) Iontophoresis of neurotensin in the area of the locus coeruleus. Brain Res 150:431–435

    Google Scholar 

  • Zieglgänsberger W, Siggins G, Brown M, Vale W, Bloom F (1978) Actions of neurotensin upon single neurone activity in different regions of the rat brain. Proc VII Int Congr Pharmacol 126

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgesellschaft (DFG) SFB 90, Carvas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triepel, J., Mader, J., Weindl, A. et al. Distribution of NT-IR perikarya in the brain of the guinea pig with special reference to cardiovascular centers in the medulla oblongata. Histochemistry 81, 509–516 (1984). https://doi.org/10.1007/BF00489528

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00489528

Keywords

Navigation