Skip to main content
Log in

Comparison of tyrosine hydroxylase and dopamine-Β-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity

  • Published:
Psychopharmacologia Aims and scope Submit manuscript

Abstract

The significance of central noradrenergic and dopaminergic neural systems for the locomotor stimulant effects of d-amphetamine were investigated in rats with depletions of norepinephrine, dopamine, or both catecholamines produced by treatment with either reserpine, L-α-methyl-tyrosine (α-MPT), 6-hydroxydopamine (6-OHDA), or the dopamine-Β-hydroxylase inhibitor 1-phenyl-3-(2-thiazolyl)-2-thiourea (U-14,624). In animals pretreated with reserpine, amphetamine-stimulated locomotor activity was blocked by Β-MPT but not by U-14,624 when amphetamine was given l h after these catecholamine synthesis inhibitors. In rats with chronic depletions of brain norepinephrine, dopamine, or both catecholamines produced by different 6-OHDA treatments, both amphetamine-stimulated motor activity and stereotyped behavior were antagonized by treatments reducing dopamine or both catecholamines but not in animals in which brain norepinephrine was reduced. Results are consistent with the view that the locomotor stimulation and stereotyped behaviors produced by d-amphetamine are dependent upon functional dopaminergic neural systems in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anden, N.-E., Roos, B. E., Werdinius, B.: Effects of chlorpromazine, haloperidol, and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci. 3, 149–158 (1964)

    Google Scholar 

  • Anton, A. H., Sayre, D. F.: A study of the factors affecting the aluminum oxidetrihydroxyindole procedure for the analysis of catecholamines. J. Pharmacol. exp. Ther. 138, 360–375 (1962)

    Google Scholar 

  • Anton, A. H., Sayre, D. F.: The distribution of dopamine and dopa in various animals and a method of their determination in diverse biological material. J. Pharmacol. exp. Ther. 145, 326–336 (1964)

    Google Scholar 

  • Bloom, F. E., Algeri, S., Groppetti, A., Revuetta, A., Costa, E.: Lesions of central norepinephrine terminals with 6-OH-dopamine: Biochemistry and fine structure. Science 166, 1284–1286 (1969)

    Google Scholar 

  • Breese, G. R., Cooper, B. R., Hollister, A. S.: Relationship of biogenio amines to behavior. In: Catecholamines and their enzymes in the neuropathology of schizophrenia. Suppl. J. psychiat. Res. (in press) (1974a)

  • Breese, G. R., Cooper, B. R., Smith, R. D.: Biochemical and behavioral alterations following 6-hydroxydopamine administration into brain. Frontiers in catecholamine research: Third International Catecholamine Symposium. S. Snyder and E. Usdin, Eds. London: Pergamon Press (in press) (1974b)

    Google Scholar 

  • Breese, G. R., Traylor, T. D.: Effects of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons. J. Pharmacol. exp. Ther. 174, 413–420 (1970)

    Google Scholar 

  • Breese, G. R., Traylor, T. D.: Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Brit. J. Pharmacol. 42, 88–99 (1971)

    Google Scholar 

  • Carlsson, A.: Amphetamine and brain catecholamines. In: Amphetamines and related compounds. E. Costa and S. Garattini, Eds., pp. 289–300. New York: Raven Press 1970

    Google Scholar 

  • Carlsson, A., Fuxe, K., Hamberger, B., Lindquist, M.: Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta physiol. scand. 67, 481–497 (1966)

    Google Scholar 

  • Christie, J. E., Crow, T. J.: Turning behavior as an index of the action of amphetamines and ephedrines on central dopamine-containing neurones. Brit. J. Pharmacol. 43, 658–667 (1971)

    Google Scholar 

  • Cooper, B. R., Breese, G. R., Grant, L. D., Howard, J. L.: Effects of 6-hydroxydopamine treatments on active avoidance responding: Evidence for involvement of brain dopamine. J. Pharmacol. exp. Ther. 185, 358–370 (1973)

    Google Scholar 

  • Cooper, B. R., Breese, G. R., Howard, J. L., Grant, L. D.: Sensitivity to the behavioral depressant effects of reserpine and alpha-methyltyrosine after 6-hydroxydopamine treatment. Psychopharmacologia (Berl.) 27, 99–110 (1972)

    Google Scholar 

  • Costa, E., Groppetti, A., Naimzada, M. K.: Effects of amphetamine on the turnover rate of brain catecholamines and motor activity. Brit. J. Pharmacol. 44, 742–751 (1972)

    Google Scholar 

  • Creese, I., Iversen, S. D.: Amphetamine response in rat after dopamine neurone destruction. Nature New Biol. 238, 247–248 (1972)

    Google Scholar 

  • Creese, I., Iversen, S. D.: Blockade of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine. Brain Res. 55, 369–382 (1973)

    Google Scholar 

  • Dominic, J. A., Moore, K. E.: Acute effects of α-methyltyrosine on brain catecholamine levels and on spontaneous and amphetamine-stimulated motor activity in mice. Arch. int. Pharmacodyn. 178, 166–176 (1969)

    Google Scholar 

  • Evetts, K. D., Uretsky, N. J., Iversen, L. L., Iversen, S. D.: Effects of 6-hydroxydopamine on CNS catecholamines, spontaneous motor activity, and amphetamine induced hyperactivity in rats. Nature (Lond.) 225, 961–962 (1970)

    Google Scholar 

  • Fibiger, H. C., Fibiger, H. P., Zis, A. P.: Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat. Brit. J. Pharmacol. 47, 683–692 (1973)

    Google Scholar 

  • Glowinski, J., Axelrod, J.: Effects of drugs on the uptake, release, and metabolism of H3-norepinephrine in the rat brain, J. Pharmacol. exp. Ther. 149, 43–49 (1965)

    Google Scholar 

  • Haggendahl, J.: An improved method for fluorometric determination of small amounts of adrenaline and noradrenaline in plasma and tissue. Acta physiol. scand. 59, 242–254 (1963)

    Google Scholar 

  • Hanson, L. C. F.: Evidence that the central action of amphetamine is mediated via catecholamines. Psychopharmacologia (Berl.) 9, 78–80 (1966)

    Google Scholar 

  • Hanson, L. C. F.: Evidence that the central action of (+)-amphetamine is mediated via catecholamines. Psychopharmacologia (Berl.) 10, 289–297 (1967)

    Google Scholar 

  • Hollister, A. S., Cooper, B. R., Breese, G. R.: Evidence for a role of dopamine in amphetamine-induced motor activity and stereotypy. Pharmacologist 15, 254 (1973)

    Google Scholar 

  • Iversen, S. D.: The effect of surgical lesions to frontal cortex and substantia nigra on amphetamine responses in rats. Brain Res. 31, 295–311 (1971)

    Google Scholar 

  • Johnson, G. A., Boukma, S. J., Kim, E. G.: In vivo inhibition of dopamine-Β-hydroxylase by l-phenyl-3-(2-thiazolyl)-2-thiourea (U-14,624). J. Pharmacol. exp. Ther. 171, 80–87 (1970)

    Google Scholar 

  • Jonsson, J., Lewander, T.: Effects of diethyldithiocarbamate and ethanol on the in vivo metabolism and pharmacokinetics of amphetamine in the rat. J. Pharm. Pharmacol. 25, 589–591 (1973)

    Google Scholar 

  • Lapin, I. P., Oxenkrug, G. F., Azbekyan, S. G.: Involvement of brain serotonin in the stimulant action of amphetamine and of cholinolytics. Arch. int. Pharmacodyn. 197, 350–361 (1972)

    Google Scholar 

  • Mabry, P. D., Campbell, B. A.: Serotonergic inhibition of catecholamine induced behavioral arousal. Brain Res. 49, 381–391 (1973)

    Google Scholar 

  • Mann, P. J. G., Quastel, J. H.: Benzedrine (Β-phenylisopropylamine) and brain metabolism. Biochem. J. 34, 414–431 (1940)

    Google Scholar 

  • Marsden, C. A., Guldberg, H. C.: The role of monoamines in rotation induced or potentiated by amphetamine after nigral, raphe and mesencephalic reticular lesions in the rat brain. Neuropharmacol. 12, 195–211 (1973)

    Google Scholar 

  • McLean, J. R., McCartney, M.: Effect of D-amphetamine on rat brain noradrenaline and serotonin. Proc. Soc. exp. Biol. (N. Y.) 107, 77–79 (1961)

    Google Scholar 

  • Moore, K. E., Lariviere, E. W.: Effects of D-amphetamine and restraint on the content of norepinephrine and dopamine in rat brain. Biochem. Pharmacol. 12, 1283–1288 (1963)

    Google Scholar 

  • Naylor, R. J., Olley, J. E.: Modification of the behavioral changes induced by amphetamine in the rat by lesions in the caudate nucleus, the caudate-putamen and globus pallidus. Neuropharmacol. 11, 91–99 (1972)

    Google Scholar 

  • Oltmans, G. A., Harvey, J. D.: LH syndrome and brain catecholamine levels after lesions of nigro-striatal bundle. Physiol. Behav. 8, 69–78 (1972)

    Google Scholar 

  • Pletscher, A., Burkhard, W. P., Gey, K. F.: Effect of monoamine releasers and decarboxylase inhibitors on endogenous 5-hydroxyindole derivatives in brain. Biochem. Pharmacol. 13, 385–390 (1964)

    Google Scholar 

  • Quinton, R. M., Halliwell, G.: Effects of α-methyldopa and DOPA on the amphetamine excitatory response in reserpinized rats. Nature (Lond.) 200, 173–179 (1963)

    Google Scholar 

  • Randrup, A., Scheel-Krüger, J.: Diethyldithiocarbamate and amphetamine stereotype behavior. J. Pharmacol. 18, 752 (1966)

    Google Scholar 

  • Reid, W. D.: Turnover rate of brain 5-hydroxytryptamine increased by D-amphetamine. Brit. J. Pharmacol. 40, 483–491 (1970)

    Google Scholar 

  • Schanberg, S. M., Schildkraut, J. J., Breese, G. R., Kopin, I. J.: Metabolism of normetanephrine in rat brain. Identification of conjugated 3-methoxy-4-hydroxyphenylglycol as the major metabolite. Biochem. Pharmacol. 17, 247–254 (1968)

    Google Scholar 

  • Simpson, B. A., Iversen, S. D.: Effects of substantia nigra lesions on the locomotor and stereotypy responses to amphetamine. Nature New Biol. 230, 30–32 (1971)

    Google Scholar 

  • Smith, C. B.: Enhancement by reserpine and α-methyl-DOPA of the effects of d-amphetamine upon locomotor activity of mice. J. Pharmacol. exp. Ther. 142, 343–350 (1963)

    Google Scholar 

  • Smith, C. B.: Effects of d-amphetamine upon brain amine content and locomotor activity of mice. J. Pharmacol. exp. Ther. 142, 343–350 (1965)

    Google Scholar 

  • Stein, L., Wise, D., Berger, B.: Noradrenergic reward mechanisms, recovery of function, and schizophrenia. In: The chemistry of mood, motivation, and memory. J. L. McGaugh, Ed., pp. 81–103. New York: Plenum Publishing Corp. 1972

    Google Scholar 

  • Stolk, J. M., Rech, R. H.: Enhanced stimulant effects of d-amphetamine in rats treated chronically with reserpine. J. Pharmacol. exp. Ther. 163, 75–83 (1968)

    Google Scholar 

  • Svensson, T. H.: The effect of inhibition of catecholamine synthesis on dexamphetamine induced central stimulation. Europ. J. Pharmacol. 12, 16–166 (1970)

    Google Scholar 

  • Taylor, K. M., Snyder, S. H.: Differential effects of D-and L-amphetamine on behavior and on catecholamine disposition in dopamine and norepinephrine containing neurons of rat brain. Brain. Res. 28, 295–309 (1971)

    Google Scholar 

  • Thornberg, J. E.: Relative importance of dopaminergic and noradrenergic neuronal systems for the stimulation of locomotor activity induced by amphetamine and other drugs. Fed. Proc. 32, 753 (1972)

    Google Scholar 

  • Ungerstedt, U.: Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta physiol. scand. 367, 49–68 (1971)

    Google Scholar 

  • Ungerstedt, U.: Behavioral-anatomical correlates of brain catecholamines. In: Frontiers in catecholamine research. Third International Catecholamine Symposium. S. Snyder and E. Usdin, Eds. London: Pergamon Press (in press) (1974)

    Google Scholar 

  • Uretsky, N. J., Iversen, L. L.: Effects of 6-hydroxydopamine on catecholamine neurones in the rat brain. J. Neurochem. 17, 269–278 (1970)

    Google Scholar 

  • Uretsky, N. J., Schoenfeld, R.: Effect of l-DOPA on the locomotor activity of rats pretreated with 6-hydroxydopamine. Nature New Biol. 234, 157–159 (1971)

    Google Scholar 

  • Van Rossum, J. M., Van der Schoot, J. B., Hurkmans, J. A. T. M.: Mechanism of action of cocaine and amphetamine in the brain. Experientia (Basel) 18, 229–231 (1962)

    Google Scholar 

  • Von Voigtlander, P. F., Moore, K. E.: Involvement of nigro-striatal neurons in the in vivo release of dopamine by amphetamine, amantadine and tyramine. J. Pharmacol. exp. Ther. 184, 542–552 (1973)

    Google Scholar 

  • Weissman, A., Koe, B. K., Tenen, S. S.: Antiamphetamine effects following inhibition of tyrosine hydroxylase. J. Pharmacol. exp. Ther. 151, 339–352 (1966)

    Google Scholar 

  • Welch, B. L., Welch, A.: Control of brain catecholamines and serotonin during acute stress and after d-amphetamine by natural inhibition of monoamine oxidase: An hypothesis, In: Amphetamines and related compounds. E. Costa and S. Garattini, Eds., pp. 415–446. New York: Raven Press 1970

    Google Scholar 

  • White, R. P., Cobb, D. B., Breese, G. R., Nash, C. B.: Acute ergotropic response by reserpine and mephentermine. Int. J. Neuropharmacol. 5, 143–154 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollister, A.S., Breese, G.R. & Cooper, B.R. Comparison of tyrosine hydroxylase and dopamine-Β-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity. Psychopharmacologia 36, 1–16 (1974). https://doi.org/10.1007/BF00441377

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00441377

Key words

Navigation