Skip to main content
Log in

Sonography and MRI of experimental muscle injuries

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

After sonographical examination with a 7.5-MHz linear array scanner, we created an experimental muscle injury of known sitze and location on 28 New Zealand white rabbits by stabbing them with a scalpel in the supraspinatus muscle. The changes in the healing process were followed and documented by sonography and magnetic resonance imaging (MRI) before and 2, 5, 11, 14, 36 and 64 days after injury. The changes in sonography and MRI followed a regular course. Ultrasound revealed an echo-poor area after injury with ever increasing echogenicity from the 14th day. Strong reflexes were found after 2 months. MRI showed few changes, only a slight increase of signal intensity, but a characteristic curve of calculated T2-times (a program of the MRI software). The interpretation of the sonographical picture in histopathological terms remained limited. The development of a hematoma and of fibrous scars can be followed up by sonography, but it is not possible to determine the point of time after injury very accurately. Nevertheless, sonography is a method of great value in the diagnosis of muscle injuries and, given certain limits, in the follow-up of the healing process, too. The significance of MRI can be increased by calculations with the implemented software, as in our study calculated T2-times produced a characteristic curve reflecting the shift of fluids after muscle injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cameron IL, Ord VA, Fullerton GD (1984) Characterization of proton MRT relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magn Reson Imaging 2:97–106

    Google Scholar 

  2. Dock W, Grabenwöger F, Happak W, Steiner E, Metz V, Ittner G, Eber K (1990) Sonographie der Skeletalmuskulatur mit hochfrequenten Schallköpfen. RÖFO 152:47–50

    Google Scholar 

  3. Fisher BD, Baracos VE, Shnitka TK, Mendryk SW, Reid DC, (1990) Ultrastructural events following acute muscle trauma. Med Sci Sports Exerc 22:185–193

    Google Scholar 

  4. Fornage BD (1987) Échography du système musculo-tendineux des membranes. Atlas d' anatomic ultrasonoire normal. Vigot, Paris

    Google Scholar 

  5. Fornage BD, Touch DH, Segal P, Rifkin MD (1983) Ultrasonography in the evaluation of muscle trauma. J Ultrasound Med 2:549–554

    Google Scholar 

  6. Fullerton GD (1988) Physiologic basis of magnetic relaxation. In: Starck DD, Bradley WG (eds) Magnetic resonance imaging. Mosby, St. Louis

    Google Scholar 

  7. Hannesschläger G, Reschhauer R, Riedelberger W, Stadler R (1988) Hochauflösende Real-time-Sonographie bei sportspezifischen Muskelverletzungen. Sonomorphologische-anatomische Korrelation und diagnostische Kriterien. Sportverletz Sportschaden 2:45–54

    Google Scholar 

  8. Harcke HT, Grissom LE, Finkelstein MS (1988) Evaluation of the musculoskeletal system with sonography. AIR 150:1253–1261

    Google Scholar 

  9. Harland U (1988) Die Abhängigkeit der Echogenität vom Anschallwinkel an Muskel und Sehnengewebe. Z Orthop 126:117–124

    Google Scholar 

  10. Hicks JE, Shawker TH, Jones BL, Linzer M, Gerber LH (1984) Diagnostic ultrasound: its use in the evaluation of muscle. Arch Phys Med Rehab 65:129–131

    Google Scholar 

  11. Hunne T, Kalimo H, Lehto M, Järvinnen M (1991) Healing of skeletal muscle injury. An ultrastructural and immunohistochemical study. Med Sci Sports Exerc 23:801–810

    Google Scholar 

  12. Kresse H (1968) Der Einflur des Einfallswinkels bei der Ultraschall-Echodiagnostik. Elektromedizin, special edition

  13. Laine HR, Harjula A, Peltokallio P (1985) Experience with real-time sonography in muscle injuries. Scand J Sports Sci 7:45–49

    Google Scholar 

  14. Mellerowicz H, Stelling E, Kiefenbaum A (1990) Diagnostic ultrasound in the athlete's locomotor system. Br J Sports Med 24:31–39

    Google Scholar 

  15. Pfister A (1987) Die Ultraschalldiagnostik bei sportorthopädischen Weichteilerkrankungen. Dtsch Z Sportmed 3: 107–110

    Google Scholar 

  16. Schröder JM (1987) Pathologie der Muskulatur. In: Doerr W, Seifert G (eds) Spezielle pathologische Anatomie, Vol. 15. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Sievers KW, Gauger J, Bauermann T, Löhr E (1993) Changes of soft-tissue water examined with magnetic resonance and electrical impedance tomography: an in vivo experiment. Angiology 44:11–14

    Google Scholar 

  18. Stauber WT, Fritz VK, Vogelbach DW, Dahlmann B (1988) Characterization of muscle injured by forced lengthening. I Cellular infiltrates. Med Sci Sport Exerc 20:345–353

    Google Scholar 

  19. Thermann H, Reimer P, Milbrandt H, Zwipp H, Wippermann B (1992) Sonographische Primärdiagnostik und Verlaufskontrolle von Muskel- und Sehnenschäden der unteren Extremität. Unfallchirurg 95:412–418

    Google Scholar 

  20. Wehrli FW (1988) Principles of magnetic resonance. In: Stark DD, Bradley WG (eds) Magnetic resonance imaging. Mosby, St. Louis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küllmer, K., Sievers, K.W., Rompe, J.D. et al. Sonography and MRI of experimental muscle injuries. Arch Orthop Trauma Surg 116, 357–361 (1997). https://doi.org/10.1007/BF00433990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00433990

Keywords

Navigation