Skip to main content
Log in

Diagnostic Imaging of Muscle Injuries in Sports Medicine: New Concepts and Radiological Approach

  • Musculoskeletal Imaging (J Guimaraes, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

The aim of this review is to discuss the most common muscle injuries in sports, state-of-the-science classification, and return to play recommendations, focused on the role of imaging findings and new techniques.

Recent findings

New efforts for more accurate classification and grading system resulted in detailed and precise terminology, such as showed in the Munich consensus and later by the British Classification system. Advanced imaging, such as MR T2 mapping, MR spectroscopy, and DTI may give further information on injured muscles’ functional status and fibers’ recovery, but it still faces cost and availability issues, which reduce its application in the professional athletes setting.

Summary

Muscle injuries in sports usually result in time lost from training and competition. High-level athletes may miss several matches or competition per season, with significant economic impact for clubs and sponsors. Accurate muscle injury classification with clinical evaluation and imaging techniques is vital for proper treatment and season planning. MRI is the method of choice to evaluate the location, size, and characteristics of the injury and it is crucial for classification and treatment planning. Ultrasound imaging performed by experienced radiologists, especially inside training/recovery facilities of professional teams, is useful to diagnose acute injuries and in the follow-up of the athletes’ recovery by seriated imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DOMS:

Delayed onset muscle soreness

DTI:

Diffusion-tensor imaging

MTJ:

Muscle–tendon junction

CSA:

Cross-sectional area

CC:

Cranio-caudal

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.

    Article  PubMed  Google Scholar 

  2. Alonso JM, Junge A, Renström P, Engebretsen L, Mountjoy M, Dvorak J. Sports injuries surveillance during the 2007 IAAF World Athletics Championships. Clin J Sport Med. 2009;19(1):26–32.

    Article  PubMed  Google Scholar 

  3. Comin J, Malliaras P, Baquie P, Barbour T, Connell D. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med. 2013;41(1):111–5.

    Article  PubMed  Google Scholar 

  4. Lopez V, Galano GJ, Black CM, et al. Profile of an American amateur rugby union sevens series. Am J Sports Med. 2012;40(1):179–84.

    Article  PubMed  Google Scholar 

  5. Borowski LA, Yard EE, Fields SK, Comstock RD. The epidemiology of US high school basketball injuries, 2005–2007. Am J Sports Med. 2008;36(12):2328–35.

    Article  PubMed  Google Scholar 

  6. Feeley BT, Kennelly S, Barnes RP, et al. Epidemiology of National Football League training camp injuries from 1998 to 2007. Am J Sports Med. 2008;36(8):1597–603.

    Article  PubMed  Google Scholar 

  7. Armfield DR, Kim DH-M, Towers JD, Bradley JP, Robertson DD. Sports-related muscle injury in the lower extremity. Clin Sports Med. 2006;25(4):803–42.

    Article  PubMed  Google Scholar 

  8. Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries biology and treatment. Am J Sports Med. 2005;33(5):745–64.

    Article  PubMed  Google Scholar 

  9. Noonan TJ, Garrett WE Jr. Muscle strain injury: diagnosis and treatment. J Am Acad Orthop Surg. 1999;7(4):262–9.

    Article  CAS  PubMed  Google Scholar 

  10. •• Mueller-Wohlfahrt H-W, Haensel L, Mithoefer K, et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med. 2013;47(6):342–50. doi:10.1136/bjsports-2012-091448. Munich consensus for classification of muscle injuries.

  11. • Ekstrand J, Healy JC, Waldén M, Lee JC, English B, Hägglund M. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46(2):112–7. Reference article on imaging findings and return to play.

  12. •• Pollock N, James SLJ, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med. 2014;48(18):1347–51. British classification reference.

  13. Kerkhoffs GMMJ, van Es N, Wieldraaijer T, Sierevelt IN, Ekstrand J, van Dijk CN. Diagnosis and prognosis of acute hamstring injuries in athletes. Knee Surg, Sport Traumatol Arthrosc. 2013;21(2):500–9.

    Article  Google Scholar 

  14. Brandser EA, El-Khoury GY, Kathol MH, Callaghan JJ, Tearse DS. Hamstring injuries: radiographic, conventional tomographic, CT, and MR imaging characteristics. Radiology. 1995;197(1):257–62.

    Article  CAS  PubMed  Google Scholar 

  15. Takebayashi S, Takasawa H, Banzai Y, et al. Sonographic findings in muscle strain injury: clinical and MR imaging correlation. J Ultrasound Med. 1995;14(12):899–905.

    Article  CAS  PubMed  Google Scholar 

  16. Peetrons P. Ultrasound of muscles. Eur Radiol. 2002;12(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  17. O’donoghue DH. Treatment of Injuries to Athletes. Philadelphia: WB Saunders Company; 1984.

    Google Scholar 

  18. Connell DA, Schneider-Kolsky ME, Hoving JL, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. Am J Roentgenol. 2004;183(4):975–84.

    Article  Google Scholar 

  19. Cross TM, Gibbs N, Houang MT, Cameron M. Acute quadriceps muscle strains magnetic resonance imaging features and prognosis. Am J Sports Med. 2004;32(3):710–9.

    Article  PubMed  Google Scholar 

  20. Gibbs NJ, Cross TM, Cameron M, Houang MT. The accuracy of MRI in predicting recovery and recurrence of acute grade one hamstring muscle strains within the same season in Australian Rules football players. J Sci Med Sport. 2004;7(2):248–58.

    Article  CAS  PubMed  Google Scholar 

  21. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during slow-speed stretching clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(10):1716–24.

    Article  PubMed  Google Scholar 

  22. Slavotinek JP. Muscle injury: the role of imaging in prognostic assignment and monitoring of muscle repair. Seminars in Musculoskeletal Radiology. 14th ed. Stuttgart: ©Thieme Medical Publishers; 2010. p. 194–200.

    Google Scholar 

  23. Stoller DW. Magnetic resonance imaging in orthopaedics and sports medicine. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  24. Meye RA, Prior BM. Functional magnetic resonance imaging of muscle. Exerc Sport Sci Rev. 2000;28(2):89–92.

    Google Scholar 

  25. Cermak NM, Noseworthy MD, Bourgeois JM, Tarnopolsky MA, Gibala MJ. Diffusion tensor MRI to assess skeletal muscle disruption following eccentric exercise. Muscle Nerve. 2012;46(1):42–50.

    Article  PubMed  Google Scholar 

  26. Chan O, Del Buono A, Best TM, Maffulli N. Acute muscle strain injuries: a proposed new classification system. Knee Surg, Sport Traumatol Arthrosc. 2012;20(11):2356–62.

    Article  Google Scholar 

  27. Fousekis K, Tsepis E, Poulmedis P, Athanasopoulos S, Vagenas G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in soccer: a prospective study of 100 professional players. Br J Sports Med. 2010;. doi:10.1136/bjsm.2010.077560.

    PubMed  Google Scholar 

  28. Ekstrand J, Askling C, Magnusson H, Mithoefer K. Return to play after thigh muscle injury in elite football players: implementation and validation of the Munich muscle injury classification. Br J Sports Med. 2013;47(12):769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hamilton B, Whiteley R, Almusa E, Roger B, Geertsema C, Tol JL. Excellent reliability for MRI grading and prognostic parameters in acute hamstring injuries. Br J Sports Med. 2013;48:1385–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. •• Pollock N, Patel A, Chakraverty J, Suokas A, James SLJ, Chakraverty R. Time to return to full training is delayed and recurrence rate is higher in intratendinous (“c”) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med. 2015;. doi:10.1136/bjsports-2015-094657. Article demonstrating clinical application and importance of intramuscular tendon integrity.

  31. Patel A, Chakraverty J, Pollock N, Chakraverty R, Suokas AK, James SL. British athletics muscle injury classification: a reliability study for a new grading system. Clin Radiol. 2015;70(12):1414–20. doi:10.1016/j.crad.2015.08.009.

    Article  CAS  PubMed  Google Scholar 

  32. • Crema MD, Guermazi A, Tol JL, Niu J, Hamilton B, Roemer FW. Acute hamstring injury in football players: association between anatomical location and extent of injury—a large single-center MRI report. J Sci Med Sport. 2016;19(4):317–22. Importance of anatomical location and extent injury inside the muscle.

  33. Hayashi D, Hamilton B, Guermazi A, de Villiers R, Crema MD, Roemer FW. Traumatic injuries of thigh and calf muscles in athletes: role and clinical relevance of MR imaging and ultrasound. Insights Imaging. 2012;3(6):591–601.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Askling CM, Tengvar M, Saartok T, Thorstensson A. Proximal hamstring strains of stretching type in different sports injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med. 2008;36(9):1799–804.

    Article  PubMed  Google Scholar 

  35. Schneider-Kolsky ME, Hoving JL, Warren P, Connell DA. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med. 2006;34(6):1008–15.

    Article  PubMed  Google Scholar 

  36. Cohen SB, Towers JD, Zoga A, et al. Hamstring injuries in professional football players magnetic resonance imaging correlation with return to play. Sport Health. 2011;3(5):423–30.

    Article  Google Scholar 

  37. • Crema MD, Yamada AF, Guermazi A, Roemer FW, Skaf AY. Imaging techniques for muscle injury in sports medicine and clinical relevance. Curr Rev Musculoskelet Med. 2015;8:154–61. doi:10.1007/s12178-015-9260-4. Imaging techniques used in the evaluation of muscle injury.

  38. Deutsch AL, Mink JH. Magnetic resonance imaging of musculoskeletal injuries. Radiol Clin N Am. 1989;27(5):983–1002.

    CAS  PubMed  Google Scholar 

  39. Kneeland JB. MR imaging of muscle and tendon injury. Eur J Radiol. 1997;25(3):199–208.

    Article  Google Scholar 

  40. Taneja AK, Kattapuram SV, Chang CY, Simeone FJ, Bredella MA, Torriani M. MRI findings of rotator cuff myotendinous junction injury. Am J Roentgenol. 2014;203(2):406–11.

    Article  Google Scholar 

  41. Koh ESC, McNally EG. Ultrasound of skeletal muscle injury. Seminars in Musculoskeletal radiology. 11th ed. Stuttgart: ©Thieme Medical Publishers; 2007. p. 162–73.

    Google Scholar 

  42. Kim HK, Lindquist DM, Serai SD, et al. Magnetic resonance imaging of pediatric muscular disorders: recent advances and clinical applications. Radiol Clin N Am. 2013;51(4):721–42.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Forbes SC, Walter GA, Rooney WD, et al. Skeletal muscles of ambulant children with Duchenne muscular dystrophy: validation of multicenter study of evaluation with MR imaging and MR spectroscopy. Radiology. 2013;269(1):198–207.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Maillard SM, Jones R, Owens C, et al. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology. 2004;43(5):603–8.

    Article  CAS  PubMed  Google Scholar 

  45. Arpan I, Forbes SC, Lott DJ, et al. T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old boys with Duchenne muscular dystrophy. NMR Biomed. 2013;26(3):320–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh T-J, Jaw T-S, Chuang H-Y, Jong Y-J, Liu G-C, Li C-W. Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy. J Comput Assist Tomogr. 2009;33(1):150–4.

    Article  PubMed  Google Scholar 

  47. Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments 1. Radiology. 2010;255(3):899–908.

    Article  PubMed  Google Scholar 

  48. Lodi R, Muntoni F, Taylor J, et al. Correlative MR Imaging and 31 P-MR spectroscopy study in sarcoglycan deficient limb girdle muscular dystrophy. Neuromuscul Disord. 1997;7(8):505–11.

    Article  CAS  PubMed  Google Scholar 

  49. Torriani M, Townsend E, Thomas BJ, Bredella MA, Ghomi RH, Tseng BS. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study. Skeletal Radiol. 2012;41(4):437–45.

    Article  PubMed  Google Scholar 

  50. • Guermazi A, Roemer FW, Robinson P, Tol JL, Regatte RR, Crema MD. Imaging of muscle injuries in sports medicine: sports imaging series. Radiology. 2017;282(3):646–63. Imaging techniques used in the evaluation of muscle injuries.

  51. Scheel M, Prokscha T, von Roth P, et al. Diffusion tensor imaging of skeletal muscle–correlation of fractional anisotropy to muscle power. RöFo-Fortschritte Auf Dem Gebiet Der Röntgenstrahlen Und Der Bildgebenden Verfahren. 185th ed. Stuttgart: ©Georg Thieme Verlag KG; 2013. p. 857–61.

    Google Scholar 

  52. Taylor DJ. Clinical utility of muscle MR spectroscopy. Seminars in Musculoskeletal radiology. 4th ed. New York: ©Thieme Medical Publishers, Inc.; 2000. p. 481–502.

    Google Scholar 

  53. Johansen L, Quistorff B. 31P-MRS characterization of sprint and endurance trained athletes. Int J Sports Med. 2003;24(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  54. Pesta D, Paschke V, Hoppel F, et al. Different metabolic responses during incremental exercise assessed by localized 31P MRS in sprint and endurance athletes and untrained individuals. Int J Sports Med. 2013;34(8):669–75.

    Article  CAS  PubMed  Google Scholar 

  55. Winn N, Lalam R, Cassar-Pullicino V. Sonoelastography in the musculoskeletal system: current role and future directions. World J Radiol. 2016;8(11):868–79. doi:10.4329/wjr.v8.i11.868.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Drakonaki EE, Allen GM. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skelet Radiol. 2010;39(4):391–6.

    Article  Google Scholar 

  57. Illomei G, Spinicci G, Locci E, Marrosu MG. Muscle elastography: a new imaging technique for multiple sclerosis spasticity measurement. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2016;. doi:10.1007/s10072-016-2780-x.

    Google Scholar 

  58. Agten CA, Buck FM, Dyer L, Flück M, Pfirrmann CWA, Rosskopf AB. Delayed-onset muscle soreness: temporal assessment with quantitative MRI and shear-wave ultrasound elastography. Am J Roentgenol. 2016;. doi:10.2214/AJR.16.16617.

    Google Scholar 

  59. Elliott MCCW, Zarins B, Powell JW, Kenyon CD. Hamstring muscle strains in professional football players a 10-year review. Am J Sports Med. 2011;39(4):843–50.

    Article  PubMed  Google Scholar 

  60. Svensson K, Alricsson M, Eckerman M, Magounakis T, Werner S. The correlation between the imaging characteristics of hamstring injury and time required before returning to sports: a literature review. 2016;12(3):134–42.

    Google Scholar 

  61. Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9.

    Article  PubMed  Google Scholar 

  62. Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sport Phys Ther. 2004;34(3):116–25.

    Article  Google Scholar 

  63. Silder A, Sherry MA, Sanfilippo J, Tuite MJ, Hetzel SJ, Heiderscheit BC. Clinical and morphological changes following 2 rehabilitation programs for acute hamstring strain injuries: a randomized clinical trial. J Orthop Sport Phys Ther. 2013;43(5):284–99.

    Article  Google Scholar 

  64. Orchard J, Best TM, Verrall GM. Return to play following muscle strains. Clin J Sport Med. 2005;15(6):436–41.

    Article  PubMed  Google Scholar 

  65. Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;. doi:10.1177/0363546513476270.

    PubMed  Google Scholar 

  66. Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35(2):197–206.

    Article  PubMed  Google Scholar 

  67. Hallén A, Ekstrand J. Return to play following muscle injuries in professional footballers. J Sports Sci. 2014;32(13):1229–36.

    Article  PubMed  Google Scholar 

  68. Petersen J, Thorborg K, Nielsen MB, et al. The diagnostic and prognostic value of ultrasonography in soccer players with acute hamstring injuries. Am J Sports Med. 2014;42(2):399–404.

    Article  PubMed  Google Scholar 

  69. Orchard J, Best TM. The management of muscle strain injuries: an early return versus the risk of recurrence. Clin J Sport Med. 2002;12(1):3–5.

    Article  PubMed  Google Scholar 

  70. Wangensteen A, Tol JL, Witvrouw E, et al. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21. doi:10.1177/0363546516646086.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Fukunishi Yamada.

Ethics declarations

Conflict of interest

André F. Yamada, Ivan R.B. Godoy, Luis Pecci Neto, Atul K. Taneja, Guinel Hernandez Filho, and Abdalla Y. Skaf declare that they have no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Department of Radiology, Hospital do Coração (HCor) and Teleimagem—Institution from which the work originated.

This article is part of the Topical collection on Musculoskeletal Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, A.F., Godoy, I.R.B., Pecci Neto, L. et al. Diagnostic Imaging of Muscle Injuries in Sports Medicine: New Concepts and Radiological Approach. Curr Radiol Rep 5, 27 (2017). https://doi.org/10.1007/s40134-017-0223-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0223-y

Keywords

Navigation