Skip to main content
Log in

Effects of l-tryptophan on motor activity in mice

  • Published:
Psychopharmacologia Aims and scope Submit manuscript

Abstract

The effects of l-tryptophan (50–800 mg/kg i.p.) on motor activity in mice were studied. l-tryptophan, 800 mg/kg, caused a reduction of motor activity while lower doses had no significant effect. The role of different metabolites of l-tryptophan in behavioural depression was tested by pretreating groups of animals with inhibitors of tryptophan hydroxylase (p-chlorophenylalanine), peripheral aromatic amino acid decarboxylase (DC) (MK-486), peripheral and central DC (NSD 1015), or tryptophan pyrrolase (allopurinol). None of these pretreatments antagonized the l-tryptophan induced depression of motor activity. Pretreatment with MK-486 or NSD-1015 potentiated the depression. Pretreatment with allopurinol potentiated as well as prolonged the depressive effect. Pretreatment with chlorimipramine had no significant effect on the l-tryptophan induced depression. The elevations of brain tryptophan and 5-hydroxytryptamine (5-HT) concentrations after l-tryptophan (800 mg/kg i.p.) were prolonged by pretreatment with allopurinol. The l-tryptophan induced increases in brain concentrations of 5-HT and 5-hydroxyindoleacetic acid were more pronounced after pretreatment with allopurinol. It is suggested that the l-tryptophan induced reduction of motor activity in mice is mediated via the amino acid itself and not via its metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anden, N.-E., Magnusson, T.: An improved method for the fluorimetric determination of 5-hydroxytryptamine in tissues. Acta physiol. scand. 69, 87–94 (1967).

    Google Scholar 

  • Ashcroft, G. W., Eccleston, D., Crasford, T. B. B.: 5-hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading-I. J. Neurochem. 12, 483–492 (1965).

    Google Scholar 

  • Atack, C. V., Magnusson, T.: Individual elution of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acid-organic solvent mixtures. J. Pharm. Pharmacol. 22, 625–627 (1970).

    Google Scholar 

  • Bartholini, G., Pletscher, A.: Effect of various decarboxylase inhibitors on the cerebral metabolism of dihydroxyphenylaline. J. Pharm. Pharmacol. 21, 323–324 (1969).

    Google Scholar 

  • Becking, G. C., Johnson, W. J.: The inhibition of tryptophan pyrrolase by allopurinol, an inhibitor of xanthine oxidase. Canad. J. Biochem. 45, 1667–1672 (1967).

    Google Scholar 

  • Bedard, P., Carlsson, A., Lindqvist, M.: Effect of transverse hemisection on 5-hydroxytryptamine metabolism in the rat brain. Naunyn-Schmiedeberg's Arch. Pharmacol. 272, 1–15 (1972).

    Google Scholar 

  • Berlet, H. H.: Aspects of amino acid metabolism in phenylketonuria and other amino acidopathies. In: Progress in brain research (W. A. Himwich and J. P. Schade, eds.) vol. 16, pp. 184–213. Amsterdam-London-New York: Elsevier 1965.

    Google Scholar 

  • Brodie, B. B., Shore, P. A.: A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N. Y. Acad. Sci. 66, 631–642 (1957).

    Google Scholar 

  • Brodie, B. B., Watson, D. R.: Serotonin in brain: functional considerations. In: Advances in pharmacology, vol. 6 B, pp. 97–113 (S. Garattini and P. A. Shore, eds.). New York-London: Academic Press 1968.

    Google Scholar 

  • Brown, B. B.: CNS drug actions and interaction in mice. Arch. int. Pharmacodyn. 128, 391–414 (1960).

    Google Scholar 

  • Carlsson, A.: Functional significance of drug-induced changes in brain monoamine levels. In: Progress in brain research, vol. 8, pp. 9–27 (H. E. Himwich and W. A. Himwich, eds.). Amsterdam-London-New York: Elsevier 1964.

    Google Scholar 

  • Carlsson, A.: Drugs which block the storage of 5-hydroxytryptamine and related amines. In: Handbook of experimental pharmacology, vol. XIX, pp. 529–592 (O. Eichler, and A. Farah, eds.). Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  • Carlsson, A.: Reporter's remarks. In: Advances in pharmacology, vol. 6 B, pp. 115–119 (S. Garattini and P. A. Shore, eds.). New York-London: Academic Press 1968.

    Google Scholar 

  • Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethylmeta-tyramine. Europ. J. Pharmacol. 5, 357–372 (1969a).

    Google Scholar 

  • Carlsson, A., Jonason, J., Fuxe, K., Lindqvist, M.: Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipramine. Brain Res. 12, 456–460 (1969b).

    Google Scholar 

  • Carlsson, A., Lindqvist, M.: The effect of l-tryptophan and some psychotropic drugs on the formation of 5-hydroxytryptophan in the mouse brain in vivo. J. Neural. Transmission 33, 23–43 (1972).

    Google Scholar 

  • Coppen, A., Whybrow, P. C., Noguera, R., Maggs, R., Prange, A. J.: The comparative antidepressent value of l-tryptophan and imipramine with and without potentation by liothronine. Arch. gen. Psychiat. 26, 234–241 (1972).

    Google Scholar 

  • Curzon, G.: Tryptophan pyrrolase—a biochemical factor in depressive illness? Brit. J. Psychiat. 115, 1367–1374 (1969).

    Google Scholar 

  • Gal, E. M., Poczik, M., Marshall, F. D., Jr.: Hydroxylation of tryptophan to 5-hydroxytryptophan by brain tissue in vivo. Biochem. biophys. Res. Commun. 12, 39–43 (1963).

    Google Scholar 

  • Grahame-Smith, D. G.: Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and l-tryptophan. J. Neurochem. 18, 1053–1066 (1971).

    Google Scholar 

  • Grahame-Smith, D. G., Parfitt, A. G.: Tryptophan transport across the synaptosomal membrane. J. Neurochem. 17, 1339–1353 (1970).

    Google Scholar 

  • Green, A. R., Curzon, G.: The effect of tryptophan metabolites on brain 5-hydroxytryptamine metabolism. Biochem. Pharmacol. 19, 2061–2068 (1970).

    Google Scholar 

  • Greengard, O., Feigelson, P.: The purification and properties of liver tryptophan pyrrolase. J. biol. Chem. 237, 1903–1907 (1962).

    Google Scholar 

  • Guroff, G., Udenfriend, S.: Studies on aromatic amino acid uptake by rat brain in vivo. J. biol. Chem. 237, 803–806 (1962).

    Google Scholar 

  • Guroff, G., Lovenberg, W.: Metabolism of aromatic amino acids. In: Handbook of neurochemistry, vol. III, pp. 209–223 (A. Lajtha, ed.). New York-London: Plenum Press 1970.

    Google Scholar 

  • Hartman, E., Chung, R., Chien, C-p.: l-Tryptophan and sleep. Psychopharmacologia (Berl.) 19, 114–127 (1971).

    Google Scholar 

  • Hess, S. M., Redfield, B. G., Udenfriend, S.: The effect of monoamine oxidase inhibitors and tryptophan on the tryptamine content of animal tissues and urine. J. Pharmacol. exp. Ther. 127, 178–181 (1959).

    Google Scholar 

  • Jéquier, E., Lovenberg, W., Sjoerdsma, A.: Tryptophan hydroxylase inhibition: the mechanism by which p-chlorophenylalanine depletes rat brain serotonin. Molec. Pharmacol. 3, 274–278 (1967).

    Google Scholar 

  • Koe, B. K., Weissman, A.: p-Chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmacol. exp. Ther. 154, 499–516 (1966).

    Google Scholar 

  • Lapin, I. P.: Interaction of kynurenine and its metabolites with tryptamine, serotonin and its precursors and oxotremorine. Psychopharmacologia (Berl.) 26, 237–247 (1972).

    Google Scholar 

  • Lehmann, J.: Mental and neuromuscular symptoms in tryptophan deficiency. Acta psychiat. scand., Suppl. (in press) (1972).

  • Lindqvist, M.: Quantitative estimation of 5-hydroxy-3-indole acetic acid and 5-hydroxy-tryptophan in the brain following isolation by means of a strong cation exchange column. Acta pharmacol. (Kbh.) 29, 303–313 (1971).

    Google Scholar 

  • Meek, J., Fuxe, K., Andén, N.-E.: Effects of antidepressant drugs of the imipramine type on central 5-hydroxytryptamine neurotransmission. Europ. J. Pharmacol. 9, 325–332 (1970).

    Google Scholar 

  • Modigh, K.: Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice. Psychopharmacologia (Berl.) 23, 48–54 (1972).

    Google Scholar 

  • Modigh, K.: Effects of chlorimipramine and protryptiline on the hyperactivity induced by 5-hydroxytryptophan after peripheral decarboxylase inhibition in mice. J. Neural. Transmission (in press) (1973).

  • Modigh, K., Svensson, T. H.: On the role of central nervous system catecholamines and 5-hydroxytryptamine in the nialamide-induced behavioural syndrome. Brit. J. Pharmacol. 46, 32–45 (1972).

    Google Scholar 

  • Moir, A. T. B., Eccleston, D.: The effect of precursor loading in the cerebral metabolism of 5-hydroxyindoles. J. Neurochem. 15, 1093–1108 (1968).

    Google Scholar 

  • Nemeth, A. M.: The effect of 5-fluorouracil on the developmental and adaptive formation of tryptophan pyrrolase. J. biol. Chem. 237, 3703–3706 (1962).

    Google Scholar 

  • Peters, D. A. V.: Inhibition of brain tryptophan 5-hydroxylase by amino acids — The role of l-tryptophan uptake inhibition. Biochem. Pharmacol. 21, 1051–1053 (1972).

    Google Scholar 

  • Porter, C. C., Watson, L. S., Titus, D. C., Totaro, J. A., Byer, S. S.: Inhibition of dopa decarboxylase by the hydrazino analog of α-methyldopa. Biochem. Pharmacol. 11, 1067–1077 (1962).

    Google Scholar 

  • Siegel, S.: Nonparametric statistics. New York: McGraw-Hill 1956.

    Google Scholar 

  • Udenfriend, S., Clark, C. T., Titus, E.: The presence of 5-hydroxytryptamine in the venom of Bufo marinus Experienta (Basel) 8, 379–380 (1952).

    Google Scholar 

  • Udenfriend, S., Titus, E., Weissbach, H., Peterson, R. E.: Biogensis and metabolism of 5-hydroxyindole compounds. J. biol. Chem. 219, 335–344 (1956).

    Google Scholar 

  • Weissbach, H., King, W., Sjoerdsma, A., Udenfriend, S.: Formation of indole-3-acetic acid and tryptamine in animals. J. biol. Chem. 234, 81–86 (1959).

    Google Scholar 

  • Werle, E., Mennicken, G.: über die Bildung von Tryptamin aus Tryptophan und von Tyramin aus Tyrosin durch tierisches Gewebe. Biochem. Z. 291, 325–327 (1937).

    Google Scholar 

  • Winer, B. J.: Statistical principles in experimental design. New York: McGraw-Hill 1962.

    Google Scholar 

  • Wyatt, R. J., Engelman, K., Kupfer, D. J., Fram, D. H., Sjoerdsma, A., Snyder, F.: Effects of l-tryptophan (a natural sedative) on human sleep. Lancet 1970 II, 842–846.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modigh, K. Effects of l-tryptophan on motor activity in mice. Psychopharmacologia 30, 123–134 (1973). https://doi.org/10.1007/BF00421427

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00421427

Key words

Navigation