Skip to main content
Log in

Assignment of the protonated 13C resonances of apo-neocarzinostatin by 2D heteronuclear NMR spectroscopy at natural abundance

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

Nearly complete assignment of the protonated carbon resonances of apo-neocarzinostatin, 113-amino acid antitumor antibiotic carrier protein, has been achieved at natural 13C abundance using heteronuclear 2D experiments. Most of the cross peaks in the proton-carbon correlation map were identified by the combined use of HMQC, HMQC-RELAY and HMQC-NOESY spectra, using already published proton chemical shifts. However, double-DEPT and triple-quantum experiments had to be performed for the edition of CH and CH2 side-chain groups, respectively, which were hardly visible on HMQC-type maps. The triple-quantum pulse sequence was adapted from its original scheme to be applicable to a natural abundance sample. The correlation between carbon chemical shifts and the apo-neocarzinostatin structure is discussed. In particular, 13C alpha secondary shifts correlate well with the backbone conformation. These shifts also yield information about the main-chain flexibility of the protein. Assignments reported herein will be used further for interpretation of carbon relaxation times in a study of the internal dynamics of apo-neocarzinostatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AdjadjE., MispelterJ., QuiniouE., DimicoliJ.L., FavaudonV. and LhosteJ.M. (1990) Eur. J. Biochem., 190, 263–271.

    PubMed  Google Scholar 

  • AdjadjE., QuiniouE., MispelterJ., FavaudonV. and LhosteJ.M. (1992a) Eur. J. Biochem., 203, 505–511.

    PubMed  Google Scholar 

  • AdjadjE., QuiniouE., MispelterJ., FavaudonV. and LhosteJ.M. (1992b) Biochimie, 74, 853–858.

    Article  PubMed  Google Scholar 

  • BaxA., GriffeyR.H. and HawkinsB.L. (1983) J. Magn. Reson., 55, 301–315.

    Google Scholar 

  • BaxA., IkuraM., KayL.E., TorchiaD.A. and TschudinR. (1990) J. Magn. Reson., 86, 304–318.

    Google Scholar 

  • BendallM.R., PeggD.T. and DoddrellD.M. (1983) J. Magn. Reson., 52, 81–117.

    Google Scholar 

  • BodenhausenG. and RubenD.J. (1980) Chem. Phys. Lett., 69, 185–189.

    Article  Google Scholar 

  • BrühwilerD. and WagnerG. (1986) J. Magn. Reson., 69, 546–551.

    Google Scholar 

  • CloreG.M., BaxA., DriscollP.C., WingfieldP.T. and GronenbornA.M. (1990) Biochemistry, 29, 8172–8184.

    PubMed  Google Scholar 

  • DavisD.G. (1990) J. Magn. Reson., 90, 589–596.

    Google Scholar 

  • DavisD.G. (1991) J. Magn. Reson., 91, 665–672.

    Google Scholar 

  • deDiosA.C., PearsonJ.G. and OldfieldE. (1993) Science, 260, 1491–1496.

    PubMed  Google Scholar 

  • DoddrellD.M., PeggD.T. and BendallM.R. (1982) J. Magn. Reson., 48, 323–327.

    Google Scholar 

  • DomkeT. and LeibfritzD. (1990) J. Magn. Reson., 88, 401–405.

    Google Scholar 

  • ErnstR.R., BodenhausenG. and WokaumA. (1987) In International Series of Monographs on Chemistry, Vol. 14 (Eds, BreslowR., HalpernJ. and RowlinsonJ.S.) Clarendon Press, Oxford, pp. 467–489.

    Google Scholar 

  • GaoX. and BurkhartW. (1991) Biochemistry, 30, 7730–7739.

    PubMed  Google Scholar 

  • GaoX. (1992) J. Mol. Biol., 225, 125–135.

    PubMed  Google Scholar 

  • HowarthO.W. and LilleyD.M.J. (1978) Prog. NMR Spectrosc., 12, 1–40.

    Google Scholar 

  • IkuraM., SperaS., BarbatoG., KayL.E., KrinksM. and BaxA. (1991) Biochemistry, 30, 9216–9228.

    PubMed  Google Scholar 

  • KappenL.S., NapierM.A. and GoldbergI.H. (1980) Proc. Natl. Acad. Sci. USA, 77, 1970–1974.

    PubMed  Google Scholar 

  • KayL.E., JueT.L., BangerterB. and DemouP.C. (1987) J. Magn. Reson., 73, 558–564.

    Google Scholar 

  • KayL.E. and BaxA. (1989) J. Magn. Reson., 84, 598–603.

    Google Scholar 

  • KesslerH., SchmiederP., and KurzM. (1989) J. Magn. Reson., 85, 400–405.

    Google Scholar 

  • KimK.H., KwonB.M., MyersA.G. and ReesD.C. (1993) Science, 262, 1042–1046.

    PubMed  Google Scholar 

  • LawsD.D., deDiosA.C. and OldfieldE. (1993) J. Biomol. NMR, 3, 607–612.

    Article  PubMed  Google Scholar 

  • LernerL. and BaxA. (1986) J. Magn. Reson., 69, 375–380.

    Google Scholar 

  • LondonR.E. and AvitabileJ. (1978) J. Am. Chem. Soc., 100, 7159–7165.

    Google Scholar 

  • MüllerL. (1979) J. Am. Chem. Soc., 101, 4481–4484.

    Google Scholar 

  • NirmalaN.R. and WagnerG. (1988) J. Am. Chem. Soc., 110, 7557–7558.

    Google Scholar 

  • NortonR.S., ClouseA.O., AddlemanR. and AllerhandA. (1977) J. Am. Chem. Soc., 99, 79–83.

    PubMed  Google Scholar 

  • NorwoodT.J., BoydJ., HeritageJ.E., SoffeN. and CampbellI.D. (1990) J. Magn. Reson., 87, 488–501.

    Google Scholar 

  • OhB.H., WestlerW.M. and MarkleyJ.L. (1989) J. Am. Chem. Soc., 111, 3083–3085.

    Google Scholar 

  • OldfieldE., NortonR.S. and AllerhandA. (1975) J. Biol. Chem., 250, 6368–6380.

    PubMed  Google Scholar 

  • PalmerIIIA.G., CavanaghJ., WrightP.E. and RanceM. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • PastoreA. and SaudekV. (1990) J. Magn. Reson., 90, 165–176.

    Google Scholar 

  • RemerowskiM.L., GlaserS.J., SiekerL.C., SamyT.S.A. and DrobnyG.P. (1990) Biochemistry, 29, 8401–8409.

    PubMed  Google Scholar 

  • RibeiroA.A., KingR., RestivoC. and JardetzkyO. (1980) J. Am. Chem. Soc., 102, 4040–4051.

    Google Scholar 

  • RicharzR., NagayamaK. and WüthrichK. (1980) Biochemistry, 19, 5189–5196.

    PubMed  Google Scholar 

  • SchmidtJ.M. and RüterjansH. (1990) J. Am. Chem. Soc., 112, 1279–1280.

    Google Scholar 

  • ShakaA.J., KeelerJ., FrenkielT. and FreemanR. (1983) J. Magn. Reson., 52, 335–338.

    Google Scholar 

  • ShonK. and OpellaS.J. (1989) J. Magn. Reson., 82, 193–197.

    Google Scholar 

  • SklenarV., TorchiaD. and BaxA. (1987) J. Magn. Reson., 73, 375–379.

    Google Scholar 

  • SørensenO.W., EichG.W., LevittM.H., BodenhausenG. and ErnstR.R. (1983) Prog. NMR Spectrosc., 16, 163–192.

    Google Scholar 

  • SperaS. and BaxA. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • SummersM.F., MarzilliL.G. and BaxA. (1986) J. Am. Chem. Soc., 108, 4285–4294.

    Google Scholar 

  • TateS.I., MasuiY. and InagakiF. (1991) J. Magn. Reson., 94, 625–630.

    Google Scholar 

  • TeplyakovA., ObmolovaG., WilsonK. and KuromizuK. (1993) Eur. J. Biochem., 213, 737–741.

    PubMed  Google Scholar 

  • WagnerG. and BrühwilerD. (1986) Biochemistry, 25, 5839–5843.

    PubMed  Google Scholar 

  • WagnerG. (1989) Methods Enzymol., 176, 93–113.

    PubMed  Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1991) J. Mol. Biol., 222, 311–333.

    PubMed  Google Scholar 

  • WüthrichK. (1976) NMR in Biological Research: Peptides and Proteins, Elsevier, New York, NY, pp. 157–209 and 293–316.

    Google Scholar 

  • ZhangX. and WangC. (1991) J. Magn. Reson., 91, 618–623.

    Google Scholar 

  • ZuiderwegE.R.P. (1990) J. Magn. Reson., 86, 346–357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefevre, C., Adjadj, É., Quiniou, É. et al. Assignment of the protonated 13C resonances of apo-neocarzinostatin by 2D heteronuclear NMR spectroscopy at natural abundance. J Biomol NMR 4, 689–702 (1994). https://doi.org/10.1007/BF00404278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404278

Keywords

Navigation