Skip to main content
Log in

Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris

  • Biochemistry
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The enzymes of the citric acid and glyoxylate cycles as well as RuBPFootnote 1 carboxylase were measured in cell-free extracts from Rhodopseudomonas palustris after growth under chemoheterotrophic, photoheterotrophic and photolithotrophic conditions. Although the citric acid cycle was found to be complete under all growth conditions, significant differences in certain enzyme activities occurred as a function of the different energy sources applied. The glyoxylate cycle also was complete under all growth conditions with highest isocitrate lyase activity seen after photoheterotrophic growth on acetate. Photo- and chemoheterotrophic growth on malate reduced the isocitrate lyase. The activity was not repressed further by photolithotrophic growth on thiosulfate. RuBP carboxylase activity, present under photolithotrophic conditions, was repressed by chemoheterotrophic growth but was not decreased by the presence of organic substrates during photoheterotrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Abbreviations: EDTA, ethylenediamine tetraacetic acid; GSH, reduced glutathione; RuBP, ribulose bisphosphate.

References

  • Albers, H. and Gottschalk, G. 1976. Acetate metabolism in Rhodopseudomonas geiatinosa and several other Rhodospirillaceae. — Arch. Microbiol. 111: 45–49.

    PubMed  Google Scholar 

  • Aleem, M. I. H. and Huang, E. 1965. Carbon dioxide fixation and carboxydismutase in Thiobacillus novellus. — Biochem. Biophys. Res. Commun. 20: 515–520.

    PubMed  Google Scholar 

  • Anfinsen, C. B. 1955. Aconitase from pig heart muscle. p. 695–698. In S. P., Colowick and N.O., Kaplan (eds), Methods in enzymology, Vol. I. — Academic Press Inc., New York, N.Y.

    Google Scholar 

  • Bridger, W. A., Ramaley, R. F. and Boyer, P. D. 1969. Succinyl coenzyme A synthetase from Esceherichia coli. p. 70–75. In J. M., Lowenstein (ed.), Methods in enzymology, Vol. XIII. —Academic Press Inc., New York, N.Y.

    Google Scholar 

  • Charles, A. M. 1971. Effect of growth substrate on enzymes of the citric acid and glyoxylic acid cycles in Thiobacillus novellus. — Can. J. Microbiol. 17: 617–624.

    PubMed  Google Scholar 

  • Chernyad'ev, I. I. and Doman, N. G. 1971. Rate of carbon assimilation by Rhodopseudomonas palustris. — Microbiology (USSR) 40: 333–336.

    Google Scholar 

  • Cooper, R. C. 1964. Evidence for the presence of certain tricarboxylic acid cycle enzymes in Thiobacillus thioparus. — J. Bacteriol. 88: 624–629.

    PubMed  Google Scholar 

  • Dixon, G. H. and Kornberg, H. L. 1962. Malate synthetase from baker's yeast. p. 633–637. In S. P., Colowick and N. O., Kaplan (eds), Methods in enzymology, Vol. V. — Academic Press Inc., New York, N.Y.

    Google Scholar 

  • Fuller, R. C. and Gibbs, M. 1959. Intracellular and phylogenetic distribution of ribulose 1,5-diphosphate carboxylase and d-glyceraldehyde-3-phosphate dehydrogenases. — Plant Physiol. 34: 324–329.

    Google Scholar 

  • Fuller, R. C., Smillie, R. M., Sisler, E. C. and Kornberg, H. L. 1961. Carbon metabolism in Chromatium. — J. Biol. Chem. 236: 2140–2149.

    PubMed  Google Scholar 

  • Gale, N. L. and Beck, J. V. 1967. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferroxidans. — J. Bacteriol. 94: 1052–1059.

    PubMed  Google Scholar 

  • Gornall, A. G., Bardawill, C. J. and David, M. M. 1949. Determination of serum proteins by means of the biuret reactions. — J. Biol. Chem. 117: 751–766.

    Google Scholar 

  • Hill, R. L. and Bradshaw, R. A. 1969. Fumarase. p. 91–99. In J. M., Lowenstein (ed.), Methods in enzymology, Vol. XIII. — Academic Press Inc., New York, N. Y.

    Google Scholar 

  • Hurlbert, R. E. and Lascelles, J. 1963. Ribulose diphosphate carboxylase in Thiorhodaceae. — J. Gen. Microbiol. 33: 445–458.

    PubMed  Google Scholar 

  • Johnson, E. J. and Abraham, S. 1969. Enzymes of intermediary carbohydrate metabolism in the obligate autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus. — J. Bacteriol. 100: 962–968.

    PubMed  Google Scholar 

  • Kaufmann, S. 1955. α-Ketoglutarate dehydrogenase system and phosphorylating enzyme from heart muscle. p. 714–722. In S. P., Colowick and N. O., Kaplan (eds), Methods in enzymology, Vol. I. — Academic Press Inc., New York, N. Y.

    Google Scholar 

  • King, T. E. 1967. Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. p. 322–331. In R. W., Estabrook and M. E., Pullman (eds), Methods in enzymology, Vol. X. —Academic Press Inc., New York, N.Y.

    Google Scholar 

  • Knobloch, K., Eley, J. H. and Aleem, M. I. H. 1971. Thiosulfate-linked ATP-dependent NAD+ reduction in Rhodopseudomonas palustris. — Arch. Mikrobiol. 80: 97–114.

    PubMed  Google Scholar 

  • Kornberg, H. L., Collins, J. F. and Bigley, D. 1960. The influence of growth substrates on metabolic pathways in Micrococcus denitrificans. — Biochim. Biophys. Acta 39: 9–24.

    Article  PubMed  Google Scholar 

  • Kornberg, H. L. and Lascelles, J. 1960. The formation of isocitratase by the Athiorhodaceae. — J. Gen. Microbiol. 23: 511–517.

    PubMed  Google Scholar 

  • Krasil'nikova, E. N., Pedan, L. V., Firsov, N. N. and Kondrat'eva 1974. Enzymes of the tricarboxylic acid cycle in various species of phototrophic bacteria. — Microbiology (USSR) 42: 887–891.

    Google Scholar 

  • Lascelles, J. 1960. The formation of ribulose 1:5-diphosphate carboxylase by growing cultures of Athiorhodaceae. — J. Gen. Microbiol. 23: 499–510.

    PubMed  Google Scholar 

  • Morita, S. 1961. Metabolism of organic acids in Rhodopseudomonas palustris in light and dark. — J. Biochem. (Tokyo) 50: 190–196.

    Google Scholar 

  • Niel, C. B. van 1944. The culture, general physiology, morphology, and classification of the nonsulfur purple and brown bacteria. — Bacteriol. Rev. 8: 1–118.

    Google Scholar 

  • Ochoa, S. 1955. Crystalline condensing enzyme from pig heart. p. 685–694. In S. P., Colowick and N. O., Kaplan (eds), Methods in enzymology, Vol. I. — Academic Press Inc., New York and London.

    Google Scholar 

  • Olson, J. A. 1959. The purification and properties of yeast isocitric lyase. — J. Biol. Chem. 234: 5–10.

    PubMed  Google Scholar 

  • Ormerod, J. G. and Gest, H. 1962. Symposium on metabolism of inorganic compounds IV. Hydrogen photosynthesis and alternative metabolic pathways in photosynthetic bacteria. —Bacteriol Rev. 26: 51–66.

    PubMed  Google Scholar 

  • Pearce, J., Leach, C. K. and Carr, N. G. 1969. The incomplete tricarboxylic acid cycle in the bluegreen alga Anabaena variabilis. — J. Gen. Microbiol. 55: 371–378.

    PubMed  Google Scholar 

  • Peeters, T. L., Liu, M. S. and Aleem, M. I. H. 1970. The tricarboxylic acid cycle in Thiobacillus denitrificans and Thiobacillus-A2. — J. Gen. Microbiol. 64: 29–35.

    PubMed  Google Scholar 

  • Qadri, S. M. H. and Hoare, D. S. 1968. Formic hydrogenlyase and the photoassimilation of formate by a strain of Rhodopseudomonas palustris. — J. Bacteriol. 95: 2344–2357.

    PubMed  Google Scholar 

  • Rolls, J. P. and Lindstrom, E. S. 1967a. Effect of thiosulfate on the photosynthetic growth of Rhodopseudomonas palustris. — J. Bacteriol. 94: 860–866.

    PubMed  Google Scholar 

  • Rolls, J. P. and Lindstrom, E. S. 1967b. Induction of a thiosulfate-oxidizing enzyme in Rhodopseudomonas palustris. — J. Bacteriol. 94: 784–785.

    PubMed  Google Scholar 

  • Smith, A. J., London, J. and Stanier, R. Y. 1967. Biochemical basis of obligate autotrophy in bluegreen algae and Thiobacilli. — J. Bacteriol. 94: 972–983.

    PubMed  Google Scholar 

  • Sottocasa, G. L., Kuylenstierna, B., Ernstner, L. and Bergstrand, A. 1967. An electrontransport system associated with the outer membrane of liver mitochondria. — J. Cell Biol. 32: 415–438.

    Article  PubMed  Google Scholar 

  • Stokes, J. E. and Hoare, D. S. 1969. Reductive pentose cycle and formate assimilation in Rhodopseudomonas palustris. — J. Bacteriol. 100: 890–894.

    PubMed  Google Scholar 

  • Yoshida, A. 1969. l-Malate dehydrogenase from Bacillus subtilis. p. 141–145. In J. M., Lowenstein (ed.), Methods in enzymology, Vol. XIII. — Academic Press Inc., New York, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eley, J.H., Knobloch, K. & Han, T.W. Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris . Antonie van Leeuwenhoek 45, 521–529 (1979). https://doi.org/10.1007/BF00403652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00403652

Keywords

Navigation