Skip to main content
Log in

In-vivo observations of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids

  • Published:
Planta Aims and scope Submit manuscript

Abstract

In-vivo differential interference contrast microscopy was used to detect individual Golgi vesicles and a new structure in the tip of fast-growing rhizoids of Chara fragilis Desvaux. This structure is a spherical clear zone which is free of Golgi vesicles, has a diameter of 5 μm and is positioned in the center of the apical Golgi-vesicle accumulation (“Spitzenkörper”). After glutaraldehyde fixation and osmium tetroxide-potassium ferricyanide staining of the rhizoid, followed by serial sectioning and three-dimensional reconstruction, the spherical zone shows a tight accumulation of anastomosing endoplasmic reticulum (ER) membranes. The ER membranes radiate from this aggregate towards the apical plasmalemma and to the membranes of the statolith compartments. Upon gravistimulation the ER aggregate changes its position according to the new growth direction, indicating its participation in growth determination. After treatment of the rhizoid with cytochalasin B or phalloidin the ER aggregate disappears and the statoliths sediment. It is concluded that the integrity of the ER aggregate is actin-dependent and that it is related to the polar organisation of the gravitropically growing cell tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CB:

cytochalasin B

DIC:

differential interference contrast microscopy

DMSO:

dimethyl sulfoxide

ER:

endoplasmic reticulum

References

  • Bojovic-Cvetic, D., Vujicie, R. (1980) Membraneous aggregates in hyphal tips of Aspergillus flavus. Arch. Mikrobiol. 126, 245–249

    Google Scholar 

  • Brunswik, H. (1924) Untersuchungen über die Geschlechts- und Kernverhältnisse bei der Hymenomycetengattung Coprinus. Bot. Abhandlungen 5, 1–152

    Google Scholar 

  • Buder, J. (1961) Der Geotropismus der Characeenrhizoide. Ber. Dtsch. Bot. Ges. 74, (14)-(23)

    Google Scholar 

  • Forsberg, C. (1965) Nutritional studies of Chara in axenic cultures. Physiol. Plant. 18, 275–290

    Google Scholar 

  • Franke, W.W., Herth, W., Vanderwoude, W.J. Morré, D.J. (1972) Tubullar and filamentous structures in pollen tubes: Possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105, 317–341

    Google Scholar 

  • Friedrich, U., Hertel, R. (1973) Abhängigkeit der geotropischen Krümmung der Chara-Rhizoide von der Zentrifugalbe-schleunigung. Z. Pflanzenphysiol. 70, 173–184

    Google Scholar 

  • Girbardt, M. (1965) Lebendnachweis von Einzelelementen des endoplasmatischen Retikulums. J. Cell Biol. 27, 433–440

    Google Scholar 

  • Girbardt, M. (1969) Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67, 413–441

    Google Scholar 

  • Grove, S.N., Bracker, C.E., Morré, D.J. (1970) An ultrastructural basis for hyphal tip growth in Phytium ultimum. Am. J. Bot. 57, 245–266

    Google Scholar 

  • Hejnowicz, Z., Heinemann, B., Sievers, A. (1977) Tip growth: Patterns of growth rate and stress in the Chara rhizoid. Z. Pflanzenphysiol. 81, 409–424

    Google Scholar 

  • Hejnowicz, Z., Sievers, A. (1981) Regulation of the position of statoliths in Chara rhizoids Protoplasma 108, 117–137

    Google Scholar 

  • Hepler, P.K. (1981) The structure of the endoplasmic reticulum revealed by osmium-tetroxide ferricyanide staining. Eur. J. Cell Biol. 26, 102–110

    Google Scholar 

  • Martin, M., Gay, J.L. (1983) Ultrastructure of conidium development in Erysiphe pisi. Can. J. Bot. 61, 2472–2495

    Google Scholar 

  • Newcomb, E.H., Bonnett, H.T. (1965) Cytoplasmic microtubule and wall microfibril orientation in root hairs of radish. J. Cell Biol. 27, 575–589

    Google Scholar 

  • Reiss, H.D., Herth, W. (1979) Calcium ionophore A 23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145, 225–232

    Google Scholar 

  • Reynolds, E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212

    Google Scholar 

  • Rosen, W.G. (1968) Ultrastructure and physiology of pollen. Annu. Rev. Plant Physiol. 19, 435–462

    Google Scholar 

  • Sassen, M.M.A. (1964) Fine structure of Petunia pollen grain and pollen tube. Acta Bot. Neerl. 13, 175–181

    Google Scholar 

  • Schmiedel, G., Schnepf, E. (1980) Polarity and growth of caulonema tip cells of the moss Funaria hygrometrica. Planta 147, 405–413

    Google Scholar 

  • Schnepf, E. (1986) Cellular polarity. Annu. Rev. Plant Physiol. 37, 23–47

    Google Scholar 

  • Schroeder, H. (1904) Zur Statolithentheorie des Geotropismus. Beih. Bot. Centralbl. 16, 269–288

    Google Scholar 

  • Schröter, K., Läuchli, A., Sievers, A. (1975) Mikroanalytische Identifikation von Bariumsulfat-Kristallen in Statolithen der Rhizoide von Chara fragilis Desv. Planta 122, 213–255

    Google Scholar 

  • Sievers, A. (1963a) Beteiligung des Golgi-Apparates bei der Bildung der Zellwand von Wurzelhaaren. Protoplasma 56, 188–192

    Google Scholar 

  • Sievers, A. (1963b) Über die Feinstruktur des Plasmas wachsender Wurzelhaare. Z. Naturforsch. 18c, 830–836

    Google Scholar 

  • Sievers, A. (1965) Elektronenoptische Untersuchungen zur geotropischen Reakton: I. Besonderheiten im Feinbau der Rhizoide von Chara foetida. Z. Pflanzenphysiol. 53, 193–213

    Google Scholar 

  • Sievers, A. (1967a) Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. II. Die polare Organisation des normal wachsenden Rhizoids von Chara foetida. Protoplasma 64, 225–253

    Google Scholar 

  • Sievers, A. (1967b) Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. III. Die transversale Polarisierung der Rhizoidspitze von Chara foetida nach 5 bis 10 Minuten Horizontallage. Z. Pflanzenphysiol. 57, 462–473

    Google Scholar 

  • Sievers, A., Heinemann, B., Rodriguez-Garcia, M.I. (1979) Nachweis des subapikalen differentiellen Flankenwachstums im Chara-Rhizoid während der Graviresponse. Z. Pflanzenphysiol. 91, 435–442

    Google Scholar 

  • Sievers, A., Schmitz, M. (1982) Röntgen-Mikroanalyse von Barium, Schwefel und Strontium in Statolithen-Kompartimenten von Chara-Rhizoiden. Ber. Dtsch. Bot. Ges. 95, 353–360

    Google Scholar 

  • Sievers, A., Schnepf, E. (1981) Morphogenesis and polarity of tubular cells with tip growth. In: Cytomorphogenesis in plants, pp. 265–299, Kiermayer, O., ed. Springer, Wien New York

    Google Scholar 

  • Sievers, A., Schröter, K. (1971) Versuch einer Kausalanalyse der geotropischen Reaktionskette im Chara Rhizoid. Planta 96, 339–353

    Google Scholar 

  • Spurr, A.R. (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43

    Google Scholar 

  • Steudle, E., Läuchli, A., Sievers, A. (1978) X-ray microanalysis of barium and calcium in plant material: Significance for the analysis of statoliths. Z. Naturforsch. 33c, 444–446

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartnik, E., Sievers, A. In-vivo observations of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids. Planta 176, 1–9 (1988). https://doi.org/10.1007/BF00392473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392473

Key words

Navigation