Skip to main content
Log in

Chloride transport in Anacystis nidulans

  • Published:
Planta Aims and scope Submit manuscript

Summary

Anacystis nidulans will take up and accumulate chloride ions. When the external concentration was 0.2 mM Cl- the level in the cells was 2.8 mM Cl- and under these conditions the flux across the cell surface was in the region of 10-13equiv Cl-·sec-1·cm-2. It is suggested that this Cl- influx is active and operates against an electrochemical potential gradient estimated to be 117 mV or 2.68 kcal/mole. The uptake of 36Cl was inhibited by low temperatures and there was a net loss of Cl- from the cells with the level decreasing towards the equilibrium value as estimated from K+ distribution. Although the active influx of Cl- was often stimulated by light this was not always the case. Dark storage treatment and regulation of the chlorophyll a/phycocyanin ratios as well as total pigment content of the cells did not clarify the conditions which brought about light stimulation. Moreover, the metabolic inhibitors CCCP and CMU and also the use of anaerobic conditions did not clearly indicate the relationship between the influx mechanism and light-dark metabolism and no firm conclusions could be made about the nature of the energy source. The variation in the degree of light stimulation probably reflects the fact that in this procaryotic organism the photosynthetic and respiratory units are located on the same membrane systems and are in very close proximity to the probable site of the Cl- pump, the plasmalemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

CMU:

3-(4-chlorophenyl)-1,1-dimethylurea

References

  • Barber, J.: Ph. D. Thesis, University of East Anglia (1967)

  • Barber, J.: Measurement of the membrane potential and evidence for active transport of ions in Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 150, 618–625 (1968a)

    Google Scholar 

  • Bisalputra, T., Brown, D. L., Weier, T. E.: Possible respiratory sites in a blue-green alga Nostoc sphaericum as demonstrated by potassium tellurite and tetranitroblue tetrazolium reduction. J. Ultrastruct. Res. 27, 183–197 (1969)

    Google Scholar 

  • Carr, N. G., Halloway, M.: Reduction of phenlindo-2-6-dichlorophenol in dark and light by the blue-green alga Anabaena variabilis. J. gen. Microbiol. 39, 335–344 (1965)

    Google Scholar 

  • Conway, E. J., Downey, M.: An outer metabolic region of the yeast cell. Biochem. J. 47, 347–355 (1950)

    Google Scholar 

  • Coster, H. G. L., Hope, A. B.: Ionic relations of cells of Chara australis XI Chloride fluxes. Aust. J. biol. Sci. 21, 243–254 (1968)

    Google Scholar 

  • Dewar, M. A., Barber, J.: Cation regulation in Anacystis nidulans. Planta (Berl.) 113, 143–155 (1973)

    Google Scholar 

  • Ghosh, A. K., Govindjee: Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys. J. 6, 611–619 (1966)

    Google Scholar 

  • Gingras, G., Lemasson, C., Fork, D. C.: A study of the mode of action of 3-(4-chlorophenyl)-1,1-dimethylurea on photosynthesis. Biochim. biophys. Acta (Amst.) 69, 438–440 (1963)

    Google Scholar 

  • Hoch, G., Owens, O. V. H., Kok, B.: Photosynthesis and respiration. Arch. Biochem. Biophys. 101, 171–180 (1963)

    Google Scholar 

  • Hope, A. B., Simpson, A., Walker, N. A.: Efflux of chloride from cells of Nitella and Chara. Aust. J. biol. Sci. 19, 355–362 (1966)

    Google Scholar 

  • Jeschke, W. D.: Die cyclische und die nicht cyclische Photophosphorylierung als Energiequellen der lichtabhängigen Chloridionanaufnahme bei Elodea. Planta (Berl.) 73, 161–174 (1967)

    Google Scholar 

  • Jeschke, W. D.: Der Influx von Kaliumionen bei Blättern von Elodea densa, Abhängigkeit vom Licht, von der Kaliumkonzentration und von der Temperatur. Planta (Berl.) 91, 111–128 (1970)

    Google Scholar 

  • Karlish, S. J. D., Shavit, N., Avron, M.: On the mechanism of uncoupling in chloroplasts by ion permeability inducing agents. Europ. J. Biochem. 9, 291–298 (1969)

    Google Scholar 

  • Lilley, R. McC., Hope, A. B.: Cl- transport and photosynthesis in cells of Griffithsia. Biochim. biophys. Acta (Amst.) 226, 161–171 (1971)

    Google Scholar 

  • MacRobbie, E. A. C.: The nature of the coupling between light energy and active ion transport in Nitella translucens. Biochim. biophys. Acta (Amst.) 94, 64–73 (1965)

    Google Scholar 

  • MacRobbie, E. A. C.: Fluxes and compartmentation in plant cells. Ann. Rev. Plant Physiol. 22, 75–96 (1971)

    Google Scholar 

  • Mitchell, P., oyle, M. J.: Permeability of the envelopes of Staphylococcus aureus to some salts, amino acids and non-electrolytes. J. gen. Microbial. 20, 434–441 (1959)

    Google Scholar 

  • Raven, J. A., MacRobbie, E. A. C., Neumann, J.: The effect of Dio-9 on photosynthesis and ion transport in Nitella, Tolypella and Hydrodictyon. J. exp. Bot. 20, 221–235 (1969)

    Google Scholar 

  • Schultz, S. G., Wilson, N. L., Epstein, W.: Cation transport in E. coli II. Intracellular Cl- concentration. J. gen. Physiol. 46, 159–166 (1962)

    Google Scholar 

  • Smith, F. A.: Metabolic effects on ion fluxes in Tolypella intricata. J. exp. Bot. 19, 442–445 (1968)

    Google Scholar 

  • Smith, F. A.: The mechanism of Cl- transport in characean cells. New Phytol. 69, 903–917 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewar, M.A., Barber, J. Chloride transport in Anacystis nidulans . Planta 117, 163–172 (1974). https://doi.org/10.1007/BF00390798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00390798

Keywords

Navigation