Skip to main content
Log in

Tissue sloughing in the sponge Halichondria panicea: a fouling organism prevents being fouled

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

Specimens of the sponge Halichondria panicea Pallas kept in running sea-water aquaria at 15° C slough off their complete outer tissue layer in regular intervals of three weeks. Sloughing starts at the rim of the oscula and extends over the whole surface within two weeks. Microscopic inspection of the tissue flakes shows them to harbour large numbers of different live organisms, as well as biogenic debris such as pieces of copepod carapaces and diatom frustules. No such community is found on freshly sloughed sponge tissue. After sloughing, the surface skeletal structure of H. panicea is markedly altered, as the characteristic halichondroid reticulum has been replaced by the irregular spicule array typical for the inner sponge tissue. When H. panicea is kept in closed aquaria filled with 0.2 μm filtered sea-water, no sloughing occurs during 3 months of maintenance. As those sponges shedding their outer tissue grow steadily at the same time, the tissue sloughing can be regarded as a reaction to sedimentation of organic material and settlement of small organisms on the sponge surface. The sponge thus counteracts clogging of its ostia and prevents the establishment of a micro fouling community on its surface, inhibiting further fouling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anger K (1972) Dipurena spongicola sp. n. (Hydrozoa, Corynidae), ein in Schwämmen lebender Hydroidpolyp aus dem Kattegat und der nördlichen Kieler Bucht. Kieler Meeresforsch 28:80–83

    Google Scholar 

  • Bakus GJ, Targett NM, Schulte B (1986) Chemical ecology of marine organisms: an overview. J Chem Ecol 12:951–987

    Google Scholar 

  • Barthel D (1988) Growth of the sponge Halichondria panicea in a North Sea habitat. Proceedings of the 21st European Marine Biology Symposium 1986, Gdansk, Poland (in press)

  • Barthel D, Theede H (1986) A new method for the culture of marine sponges and its application for experimental studies. Ophelia 25(2):75–82

    Google Scholar 

  • Bongers T (1983) Bionomics and reproductive cylce of the nematode Leptosomatum bacillatum living in the sponge Halichondria panicea. Neth J Sea Res 17(1):39–46

    Google Scholar 

  • Burton M (1948) Observations on sponges, including the supposed swarming of larvae, movement and coalescence in mature individuals, longevity and death. Proc Zool Soc London 118:893–915

    Google Scholar 

  • Christensen T (1985) Microspora ficulinae, a green alga living in marine sponges. Br Phycol J 20:5–7

    Google Scholar 

  • Connes R (1967) Réactions de défense de l'éponge Thethya lyncurium Lamarck, vis-á-vis des micro-organismes et de l'amphipode Leucothoe spinicarpa Abildg. Vie et milieu 18A(2):281–289

    Google Scholar 

  • Ciereszko LS, Mizelle JW, Schmidt RW (1973) Occurrence of taurobetaine in coelenterates and of polysaccharide sulfate in the gorgonian Pseudoterogorgia americana. In: Worthen LR (ed) Food-Drugs from the Sea Proceedings 1972. Marine Technology Society, Washington, D.C.

    Google Scholar 

  • Conover JT, Sieburth JM (1964) Effect of Sargassum distribution on its epibiota and antibacterial activity. Bot Mar 6:147–155

    Google Scholar 

  • Costello MJ, Myers AA (1987) Amphipod fauna of the sponges Halichondria panicea and Hymeniacidon perleve in Lough Hine, Ireland. Mar Ecol Prog Ser 41:115–121

    Google Scholar 

  • Eimhjellen KE (1967) Photosynthetic bacteria and carotenoids from a sea sponge Halichondrium panicea. Acta Chem Scand 21:2281–2281

    Google Scholar 

  • Filion-Myklebust C, Norton TA (1981) Epidermis shedding in the brown seaweed Ascophyllum nodosum (L.). Le Jolis, and its ecological significance. Mar Biol Lett 2:45–51

    Google Scholar 

  • Fischer H (1978) Hydroids in biotest:Clava multicornis exposed to cadmium. Kieler Meeresforsch [Suppl 4]:327–334

  • Firth DW (1977) A preliminary analysis of the association of amphipods Microdeutopus damnoniensis (Bate), M. anomalus (Rathke) and Corophium sextoni Crawford with the sponges Halichondria panicea (Pallas) and Hymeniacidon perleve (Montagu). Crustaceana 32:113–118

    Google Scholar 

  • Fuller JI (1946) Season of attachment and growth of sedentary marine organisms at Lamoine, Maine. Ecology 27:150–158

    Google Scholar 

  • Graham HW, Gay H (1945) Season of attachment and growth of sedentary marine organisms at Oakland, California. Ecology 26:375–386

    Google Scholar 

  • Hummel H, Sepers ABJ, Wolf L de, Melissen FW (1988) Bacterial growth on the marine sponge Halichondria panicea induced by reduced waterflow rate. Mar Ecol Prog Ser 42:195–198

    Google Scholar 

  • Jagels RH (1970) Cell wall development in a marine monocotyledon. Am J Bot [Abstr] 57:737–738

    Google Scholar 

  • Johnson CR, Mann KH (1986) The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J Exp Mar Biol Ecol 96:127–146

    Google Scholar 

  • Jones WC (1987) Skeletal variation in embryo-containing specimens of Haliclona rosea (Bowerbank) from Anglesey, North Wales. In: Vacelet J, Boury-Esnault N (eds) Taxonomy of Porifera. From the N.E. Atlantic and the Mediterranean Sea. Nato ASI Series G, Vol. 13, Springer, Berlin Heidelberg New York London Paris Tokyo, pp 101–124

    Google Scholar 

  • Kinzie RA III (1973) Zonation of West Indian gorgonians. Bull Mar Sci 22:93–155

    Google Scholar 

  • Laubenfels MW de (1949) The sponges of Woods Hole and adjacent waters. Bull Mus Comp Zool 103:1–55

    Google Scholar 

  • Lauckner G (1980) Diseases of Porifera. In: Kinne O (ed) Diseases of marine animals, Vol I, General aspects, Protozoa to Gastropods. Wiley, Chichester, pp 139–165

    Google Scholar 

  • Long ER (1968) The associates of four species of marine sponges of Oregon and Washington. Pacif Sci 22:347–351

    Google Scholar 

  • Marszalek DJ, Gerehakov JM, Udey LR (1979) Influence of substrate composition on marine microfouling. App Environ Microbiol 38:987–995

    Google Scholar 

  • McArthur DM, Moss BL (1977) The ultrastructure of cell walls in Enteromorpha intestinalis (L.) Link. Br Phycol J 12:359–368

    Google Scholar 

  • Moss BL (1982) The control of epiphytes by Halydris siliquosa (L.) Lyngb. (Phaeophyta, Cystoseiraceae). Phycologia 21(2):185–191

    Google Scholar 

  • O'Neill TB, Wilcox GL (1971) The formation of a “primary film” on materials submerged in the sea at Port Hueneme, California. Pac Sci 25:1–12

    Google Scholar 

  • Patton WK (1972) Studies on the animal symbionts of the gorgonian coral Leptogorgia virgulata (Lamarck). Bull Mar Sci 22:413–419

    Google Scholar 

  • Peattie ME, Hoare R (1981) The sublittoral ecology of the Menai Strait. II. The sponge Halichondria panicea (Pallas) and its associated fauna. Estuar Coast Shelf Sci 13:621–635

    Google Scholar 

  • Russel G, Veltkamp CJ (1984) Epiphyte survival on skin-shedding macrophytes. Mar Ecol Progr Ser 18:149–153

    Google Scholar 

  • Sarà M, Vacelet J (1973) Ecologie des démosponges. In: Grassé P-P (ed) Traité de Zoologie, Vol. III, part I, Spongiaires. Masson et Compagnie, Paris, p 481

    Google Scholar 

  • Sieburth JMcN, Tootle JL (1981) Seasonality of microbial fouling on Ascophyllum nodosum (L.) Le Jol., Fucus vesiculosus L., Polysiphonia lanosa (L.) Tandy and Chondrus crispus Stackh. J Phycol 17:57–64

    Google Scholar 

  • Silver MW, Gowing MM, Brownlee DC, Corliss JO (1984) Ciliated protozoa associated with oceanic sinking detritus. Nature 309:246–248

    Google Scholar 

  • Thompson JE (1985) Exudation of biologically-active metabolites in the sponge Aplysina fistularis. I. Biological evidence. Mar Biol 88:23–26

    Google Scholar 

  • Thompson JE, Walker RP, Faulkner DJ (1985) Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA. Mar Biol 88:11–21

    Google Scholar 

  • Wahl M (1987) Epibiosis und Antifouling im Meer. Die Abwehrmechanismen der kolonialen Seescheide P. lacazei gegenüber dem Besiedlungsdruck durch potentielle Epibionten.Doctoral dissertation Universität Kiel, p 140

  • Walker RP, Thompson JE, Faulkner DJ (1985) Exudation of biologically-active metabolites in the sponge Aplysina fistularis. II. Chemical evidence. Mar Biol 88:27–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthel, D., Wolfrath, B. Tissue sloughing in the sponge Halichondria panicea: a fouling organism prevents being fouled. Oecologia 78, 357–360 (1989). https://doi.org/10.1007/BF00379109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379109

Key words

Navigation