Skip to main content
Log in

Living inside a sponge skeleton: the association of a sponge, a macroalga and a diatom

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The relationships between sponges and macroalgae have been poorly investigated, especially in temperate waters. This work describes the consortium between the dictyoceratid sponge Dysidea pallescens and the red alga Acrochaetium spongicola permeating spongin fibres in the Mediterranean Sea; moreover, this is the first report of a diatom, Amphora pediculus, living also inside the spongin skeleton. The annual trend of the total algal biomass did not vary over time in relation to the temperature, irradiance and incorporation of foreign bodies. Our analyses, conducted by light and electron microscopy, suggest that both the macroalga and the diatom invade the skeleton of the sponge from the external environment, and that the benthic diatom, epiphyte of the macroalga, is passively carried inside the fibres through the growth of Acrochaetium spongicola. All the examined samples of D. pallescens showed that the macroalga permeated at least some fibres, while the presence of the diatom was occasional. The superficial layer of the sponge, thin and reticulate, likely allows the passage of the light and ensures the algal survival inside the sponge tissue. The high occurrence of the association with A. spongicola, together with the morphological adaptations of the sponge favouring the algal life, suggest that the relationship is mutualistic. The possible benefits for the involved partners are hypothesized. The taxonomy and ecology of endozoic Acrochaetiales are controversial due to the reduced size of thalli, the absence of peculiar diagnostic characters and unknown reproductive structures. Therefore, detailed studies on the relationships between the algae and their hosts will provide helpful information for the algal identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Agena M, Tanaka C, Hanif N, Yasumoto-Hirose M, Tanaka J (2009) New cytotoxic spongian diterpenes from the sponge Dysidea Cf. arenaria. Tetrahedron 65:1495–1499

    Article  CAS  Google Scholar 

  • Algaebase. www.algaebase.org. Accessed 05 November 2015

  • Arillo A, Bavestrello G, Burlando B, Sarà M (1993) Metabolic integration between symbiotic cyanobacteria and sponges—a possible mechanism. Mar Biol 117:159–162

    Article  CAS  Google Scholar 

  • Ávila E, Carballo JL (2004) Growth and standing stock biomass of a mutualistic association between the sponge Haliclona caerulea and the red alga Jania adherens. Symbiosis 36:225–244

    Google Scholar 

  • Ávila E, Carballo JL (2006) Habitat selection by larvae of the symbiotic sponge Haliclona caerulea (Hechtel, 1965) (demospongiae, Haplosclerida). Symbiosis 41:21–29

    Google Scholar 

  • Ávila E, Carballo JL, Cruz-Barraza JA (2007) Symbiotic relationships between sponges and other organisms from the sea of Cortes (Mexican Pacific coast): same problems, same solutions. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability, Série livros, vol 28. Museu Nacional, Rio de Janeiro, pp. 147–156

    Google Scholar 

  • Bavestrello G, Cerrano C, Cattaneo-Vietti R, Gaino E, Penna A, Sarà M (2000) Parasitic diatoms inside Antarctic sponges. Biol Bull 198:29–33

    Article  CAS  PubMed  Google Scholar 

  • Becerro M (2012) Advances in sponge science: phylogeny, systematics, ecology, vol Vol. 61. Center for Advanced Studies, (CEAB, CSIC), Spain 421 pp

    Google Scholar 

  • Becerro MA, Paul VJ (2004) Effects of depth and light on secondary metabolites and cyanobacterial symbionts of the sponge Dysidea granulosa. Mar Ecol Prog Ser 280:115–128

    Article  CAS  Google Scholar 

  • Bergquist PR, Tizard CA (1967) Australian intertidal sponges from the Darwin area. Micronesica 3:175–202

    Google Scholar 

  • Betti F, Bo M, Di Camillo CG, Bavestrello G (2012) Life hystory of Cornularia cornucopiae (Anthozoa: Octocorallia) on the Conero promontory (North Adriatic Sea). Mar Ecol 33:49–55

    Article  Google Scholar 

  • Boney AD (1972) In vitro growth of the endophyte Acrochaetium bonnemaisoniae (Batt.) J et G Feldmann. Nova Hedwigia 23:173–186

    Google Scholar 

  • Boney AD (1982) Complementary association of an endophytic red alga and a shell-encrusting green alga. Ann Bot 50:179–183

    Article  Google Scholar 

  • Boney AD, White EB (1967) Observations on an endozoic red alga. J Mar Biol Assoc UK 47:223–232

    Article  Google Scholar 

  • Brümmer F, Pfannkuchen M, Baltz A, Hauser T, Thiel V (2008) Light inside sponges. J Exp Mar Biol Ecol 367:61–64

    Article  Google Scholar 

  • Burgsdorf I, Erwin PM, López-Legentil S, Cerrano C, Haber M, Frenk S, Steindler L (2014) Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis. Front Microbiol 5:1–11

    Article  Google Scholar 

  • Byun DS, Pinardi N (2007) Comparison of marine insolation estimating methods in the Adriatic Sea. Ocean Sci J 42:211–222

    Article  Google Scholar 

  • Calcinai B, Cerrano C, Totti C, Romagnoli T, Bavestrello G (2006) Symbiosis of Mycale (Mycale) vansoesti sp.nov. (Porifera, Demospongiae) with a coralline alga from North Sulawesi (Indonesia). Invertebr Biol 125:195–204

    Article  Google Scholar 

  • Calcinai B, Bavestrello G, Cuttone G, Cerrano C (2011) Excavating sponges from the Adriatic Sea, description of Cliona adriatica sp. nov. (Demospongiae, Clionaidae) and estimation of its boring activity. J Mar Biol Assoc UK 91:339–346

    Article  Google Scholar 

  • Calcinai B, Bavestrello G, Bertolino M, Pica D, Wagner D, Cerrano C (2013) Sponges associated with octocorals in the indo-Pacific, with the description of four new species. Zootaxa 3617:1–61

    Article  PubMed  Google Scholar 

  • Carballo JL, Ávila E (2004) Population dynamics of a mutualistic interaction between the sponge Haliclona caerulea, and the red alga Jania adherens. Mar Ecol Prog Ser 279:93–104

    Article  Google Scholar 

  • Carballo JL, Ávila E, Enríquez S, Camacho L (2006) Phenotypic plasticity in a mutualistic association between the sponge Haliclona caerulea and the calcareous macroalga Jania adherens induced by transplanting experiments. I, morphological responses of the sponge. Mar Biol 148:467–478

    Article  Google Scholar 

  • Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix L, Foster RA, Al-Rshaidat MMD, Wild C (2015) Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. In: The Royal Society Publishing, London (ed) Proc R Soc B 282:2015–2257

  • Cattaneo-Vietti R, Bavestrello G, Cerrano C, Sarà M, Benatti U, Giovine M, Gaino E (1996) Optical fibres in an Antarctic sponge. Nature 383:397–398

    Article  CAS  Google Scholar 

  • Cerrano C, Bavestrello G, Cattaneo-Vietti R, Giovine M, Benatti U, Sarà M (1999) Incorporation of inorganic matter in Chondrosia reniformis (Porifera, Demospongiae): the role of water turbulence. Mem Queen Mus 44:85–90

    Google Scholar 

  • Cerrano C, Arillo A, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Penna A, Sarà M, Totti C (2000) Diatom invasion in the antarctic hexatinellid sponge Scolymastra joubini. Polar Biol 23:441–444

    Article  Google Scholar 

  • Cerrano C, Calcinai B, Cucchiari E, Camillo CG, Nigro M, Regoli F, Sarà A, Schiaparelli S, Totti C, Bavestrello G (2004a) Are diatoms a food source for Antarctic sponges? Chem Ecol 20:57–64

    Article  Google Scholar 

  • Cerrano C, Calcinai B, Cucchiari E, Di Camillo C, Totti C, Bavestrello G (2004b) The diversity of relationships between Antarctic sponges and diatoms, the case of Mycale acerata (Porifera, Demospongiae). Polar Biol 27:231–237

    Article  Google Scholar 

  • Cerrano C, Calcinai B, Pinca S, Bavestrello G (2006) Reef sponges as hosts of biodiversity, cases from North Sulawesi. In: Suzuki Y, Nakamori T, Hidaka M, Kayanne H, Casareto BE, Nadao K, Yamano H, Tsuchiya M (eds) Proceedings of the Xth Coral Reef Symposium, Okinawa, pp. 208–213

  • Cerrano C, Calcinai B, Di Camillo CG, Valisano L, Bavestrello G (2007) How and why do sponges incorporate foreign material? Strategies in Porifera. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research, biodiversity, innovation and sustainability, Publisher: Série livros, vol 28. Museu Nacional, Rio de Janeiro, pp. 239–246

    Google Scholar 

  • Cook SC, Bergquist PR (2002) Family Dysideidae gray 1876. In: Hooper JNA, Van Soest RWM (eds) Systema porifera, a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York, pp. 1061–1066

    Google Scholar 

  • Corallini C, Gaino E (2003) The caddisfly Ceraclea fulva and the freshwater sponge Ephydatia fluviatilis, a successful relationship. Tissue Cell 35:1–7

    Article  PubMed  Google Scholar 

  • Correa JA (1994) Infecciones por algas endófitas, mal uso de conceptos y terminología. Rev Chil Hist Nat 67:4–8

    Google Scholar 

  • Cox G, Larkum WD (1983) A diatom apparently living in symbiosis with a sponge. Bull Mar Sci 33:943–945

    Google Scholar 

  • Crocker LA, Reiswig HM (1981) Host specificity in sponge-encrusting Zoanthidea (Anthozoa, Zoantharia) of Barbados, West Indies. Mar Biol 65:231–236

    Article  Google Scholar 

  • da Cruz JF, Gaspar H, Calado G (2012) Turning the game around, toxicity in a nudibranch-sponge predator–prey association. Chemoecology 22:47–53

    Article  CAS  Google Scholar 

  • Davy SK, Trautman DA, Borowitzka MA, Hinde R (2002) Ammonium excretion by a symbiotic sponge supplies the nitrogen requirements of its rhodophyte partner. J Exp Biol 205:3505–3511

    CAS  PubMed  Google Scholar 

  • Dawson EY (1953) Marine red algae of Pacific Mexico. Part 1. Bangiales to Corallinaceae subf. Corallinoidae. Allan Hancock Pacific Expeditions 17:1–239

    Google Scholar 

  • De Caralt S, Bry D, Bontemps N, Turon X, Uriz MJ, Banaigs B (2013) Sources of secondary metabolite variation in Dysidea avara (porifera, demospongiae), the importance of having good neighbors. Marine Drugs 11:489–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Camillo CG, Cerrano C (2015) Mass mortality events in the NW Adriatic Sea, phase shift from slow-to fast-growing organisms. PLoS One 10:e0126689. doi:10.1371/journal.pone.0126689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Camillo CG, Coppari M, Bartolucci I, Bo M, Betti F, Bertolino M, Calcinai B, Cerrano C, De Grandis G, Bavestrello G (2012a) Temporal variations in growth and reproduction of Tedania anhelans and Chondrosia reniformis in the North Adriatic Sea. Hydrobiologia 687:299–313

    Article  Google Scholar 

  • Di Camillo CG, Bo M, Betti F, Martinelli M, Puce S, Vasapollo C, Bavestrello G (2012b) Population dynamics of Eudendrium racemosum (Cnidaria, Hydrozoa) from the North Adriatic Sea. Mar Biol 159:1593–1609

    Article  Google Scholar 

  • Di Camillo CG, Bartolucci I, Cerrano C, Bavestrello G (2013) Sponge disease in the Adriatic Sea. Mar Ecol 34:62–71

    Article  Google Scholar 

  • Di Camillo CG, Bosato S, Cerrano C (2014) Reproductive ecology of Epizoanthus arenaceus delle Chiaje, 1823 (Cnidaria, Anthozoa) from the North Adriatic Sea. J Exp Mar Biol Ecol 461:144–153

    Article  Google Scholar 

  • Dixon PS, Irvine LM (1977) Seaweeds of the British Isles. Volume 1 Rhodophyta. Part 1 Introduction, Nemaliales, Gigartinales. British Museum (Natural History) London, Pelagic Publishing, 252 pp

  • Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR (2005) Loss of foundation species, consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486

    Article  Google Scholar 

  • Enríquez S, Ávila E, Carballo JL (2009) Phenotypic plasticity induced in transplant experiments in a mutualistic association between the red alga Jania adhaerens (Rhodophyta, Corallinales) and the sponge Haliclona caerulea (Porifera, Haplosclerida), morphological responses of the alga. J Phycol 45:81–90

    Article  PubMed  Google Scholar 

  • Fontana A, Gimenez F, Marin A, Mollo E, Cimino G (1994) Transfer of secondary metabolites from the sponges Dysidea fragilis and Pleraplysilla spinifera to the mantle dermal formations (MDFs) of the nudibranch Hypserlodoris webbi. Experientia 50:510–516

    Article  CAS  Google Scholar 

  • Gaino E, Sarà M (1994) Siliceous spicules of Tethya seychellensis (Porifera) support the growth of a green alga, a possible light conducting system. Mar Ecol Prog Ser 108:147–151

    Article  Google Scholar 

  • Gaino E, Bavestrello G, Cattaneo-Vietti R, Sarà M (1994) Scanning electron microscope evidence for diatom uptake by two Antarctic sponges. Polar Biol 14:55–58

    Article  Google Scholar 

  • Gaino E, Sciscioli M, Lepore E, Rebora M, Corriero G (2006) Association of the sponge Tethya orphei (Porifera, Demospongiae) with filamentous cyanobacteria. Invertebr Biol 125:281–287

    Article  Google Scholar 

  • Gaino E, Bo M, Betti F, Bertolino M, Scoccia F, Bavestrello G (2014) Ultrastructural evidence of a fungus-sponge association in the Ligurian Sea, a case study of Clathrina coriacea (Porifera, Calcarea). Ital J Zool 81:501–507

    Article  Google Scholar 

  • Garrone R, Pottu J (1973) Collagen biosynthesis in sponges-elaboration of spongin by spongocytes. J Submicrosc Cytol Pathol 5:199–218

    CAS  Google Scholar 

  • Gauna MC, Parodi ER (2008) Green epi-endophytes in Hymenena falklandica (Rhodophyta) from the Patagonian coasts of Argentina. Phycol Res 56:172–182

    Article  Google Scholar 

  • Gross J, Sokal Z, Rougvie M (1956) Structural and chemical studies on the connective tissue of marine sponges. J Histochem Cytochem 4:227–246

    Article  CAS  PubMed  Google Scholar 

  • Hamilton PB, Poulin M, Yang JR, Klöser H (1997) A new diatom genus Porannulus (Bacillariophyta), associated with marine sponges around King George Island. South Shetland Islands, Antarctica Diatom Res 12:229–242

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST, paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9 http://palaeo-electronica.org/2001_1/past/issue1_01.htm

    Google Scholar 

  • Harper JT, Saunders GW (2002) A re-classification of the Acrochaetiales based on molecular and morphological data, and establishment of the Colaconematales ord. nov. (Florideophyceae, Rhodophyta). Eur J Phycol 37:463–476

    Article  Google Scholar 

  • Huang XC, Li J, Li ZY, Shi L, Guo YW (2008) Sesquiterpenes from the Hainan sponge Dysidea septosa. J Nat Prod 71:1399–1403

    Article  CAS  PubMed  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Junqua S, Robert L, Garrone R, De Ceccatty MP, Vacelet J (1974) Biochemical and morphological studies on collagens of keratose sponges. Ircinia filaments compared to spongines. Connect. Tissue Res 2:193–203

    Article  CAS  Google Scholar 

  • Kitayama T (2009) The identity of the endozoic red alga Rhodochortonopsis spongicola Yamada (Acrochaetiales, Rhodophyta). Bull Natl Mus Nat Sci 35:183–187

    Google Scholar 

  • Koukouras A, Russo A, Voultsiadou-Koukoura E, Dounas C, Chintiroglou C (1992) Relationship of sponge macrofauna with the morphology of their hosts in the north Aegean Sea. Int Rev Gesamten Hydrobiol 77:609–619

    Article  Google Scholar 

  • Lemloh ML, Fromont J, Brümmer F, Usher KM (2009) Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol 9:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments, spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Louden D, Inderbitzin S, Peng Z, De Nys R (2007) Development of a new protocol for testing bath sponge quality. Aquaculture 271:275–285

    Article  Google Scholar 

  • Maldonado M, Riesgo A (2009) Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar Biol 156:2181–2197

    Article  Google Scholar 

  • Maldonado M, Uriz MJ (1992) Relationships between sponges and crabs: patterns of epibiosis on Inachus aguiarii (Decapoda, Majidae). Mar Biol 113:281–286

    Google Scholar 

  • Maldonado M, Sànchez-Tocino L, Navarro C (2010) Recurrent disease outbreaks in corneous demosponges of the genus Ircinia, epidemic incidence and defense mechanisms. Mar Biol 157:1577–1590

    Article  Google Scholar 

  • Maldonado M, Ribes M, van Duyl FC (2012) Nutrient fluxes through sponges, biology, budgets, and ecological implications. Adv Mar Biol 62:113–182

    Article  PubMed  Google Scholar 

  • Martin D, Britayev TA (1998) Symbiotic polychaetes, review of known species. Oceanogr Mar Biol Annu Rev 36:217–340

    Google Scholar 

  • McLean EL, Yoshioka PM (2007) Associations and interactions between gorgonians and sponges. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability, Publisher: Série livros, vol 28. Museu Nacional, Rio de Janeiro, pp. 443–448

    Google Scholar 

  • Miller RJ, Hocevar J, Stone RP, Fedorov DV (2012) Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons. PLoS ONE 7(3), e33885. doi:10.1371/journal.pone.0033885

  • National Tidegauge Network http://www.mareografico. Accessed 10 January 2015

  • Price IR, Friker RL, Wilkinson CR (1984) Ceratodictyon spongiosum (Rhodophyta), the macroalgal partner in an alga-sponge symbiosis, grown in unialgal culture. J Phycol 20:156–158

    Article  Google Scholar 

  • Puce S, Calcinai B, Bavestrello G, Cerrano C, Gravili C, Boero F (2005) Hydrozoa (Cnidaria) symbiotic with porifera, a review. Mar Ecol 26:73–139

    Article  Google Scholar 

  • Regoli F, Cerrano C, Chierici E, Bompadre S, Bavestrello G (2000) Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis, role of endosymbionts and solar irradiance. Mar Biol 137:453–461

    Article  CAS  Google Scholar 

  • Rosell D, Uriz MJ (1992) Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (porifera, Hadromerida)? An experimental approach. Mar Biol 114:503–507

    Article  Google Scholar 

  • Rossi S (2013) The destruction of the ‘animal forests’ in the oceans, towards an oversimplification of the benthic ecosystems. Ocean Coast Manag 84:77–85

    Article  Google Scholar 

  • Rützler K (1990) Association between Carribean sponges and photosynthetic organism. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, 533 pp

  • Sarà M (1966) Associazioni fra Poriferi e alghe in acque superficiali del litorale marino. Rice Sci 36:277–282

    Google Scholar 

  • Sarà M (1970) Competition and cooperation in sponge populations. In: Fry WC (ed) The biology of the porifera. Academic Press pp, London, pp. 273–284

    Google Scholar 

  • Silveira CB, Silva-Lima AW, Francini-Filho RB, Marques JS, Almeida MG, Thompson CC, Rezende CE, Paranhos R, Moura RL, Salomon PS, Thompson FL (2015) Microbial and sponge loops modify fish production in phase-shifting coral reefs. Environ Microbiol 17:3832–3846

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, the principle and practice of statistics in biological research. In: Freeman WH and Company (eds) New York, 887 pp

  • Steindler L, Beer S, Ilan M (2002) Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33:263–273

    Google Scholar 

  • Tazioli S, Di Camillo CG (2013) Ecological and morphological characteristics of Ephelota gemmipara (Ciliophora, Suctoria), epibiontic on Eudendrium racemosum (Cnidaria, Hydrozoa) from the Adriatic Sea. Eur J Protistol 49:590–599

    Article  PubMed  Google Scholar 

  • Teragawa CK (1986) Particle transport and incorporation during skeleton formation in a keratose sponge Dysidea etheria. Biol Bull 170:321–334

    Article  Google Scholar 

  • Totti C, Calcinai B, Cerrano C, Di Camillo C, Romagnoli T, Bavestrello G (2005) Diatom assemblages associated with Sphaerotylus antarcticus (Porifera, Demospongiae). J Mar Biol Assoc UK 85:795–800

    Article  Google Scholar 

  • Trautman DA, Hinde R (2001) Sponge/algal symbioses: a diversity of associations. In: Seckbach J (ed) Symbiosis. Kluwer Academic Publishers, pp. 521–537

  • Trautman DA, Hinde R, Borowitzka MA (2000) Population dynamics of an association between a coral reef sponge and a red macroalga. J Exp Mar Biol Ecol 244:87–105

    Article  Google Scholar 

  • Trautman DA, Hinde R, Borowitzka MA (2003) The role of habitat in determining the distribution of a sponge-red alga symbiosis on a coral reef. J Exp Mar Biol Ecol 283:1–20

    Article  Google Scholar 

  • Tribollet A (2008) The boring microflora in modern coral reef ecosystems, a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin Heidelberg pp, pp. 67–94

    Chapter  Google Scholar 

  • Tronchin E, Samaai T, Anderson RJ, Bolton JJ (2006) Sponge–seaweed associations in species of Ptilophora (Gelidiaceae, Rhodophyta). Phycol Res 54:140–148

    Article  Google Scholar 

  • Uriz MJ, Rosell D, Maldonado M (1992) Parasitism, commensalism or mutualism? The case of Scyphozoa (Coronatae) and keratose sponges. Mar Ecol Prog Ser 81:247–255

    Article  Google Scholar 

  • Vacelet J (1971) Ultrastructure of cuticle of Verongia. J Microsc (Oxford) 10:113

    Google Scholar 

  • Vacelet J (1981) Algal–sponge symbiosis in the coral reefs of New Caledonia, a morphological study. Proc Fourth Int Coral Reef Symp Manila 2:713–719

    Google Scholar 

  • Van Trigt H (1918) A contribution to the physiology of the freshwater sponges (Spongillidae). Koninklijke Nederlandse Akademie van Wetenschappen Proc Series B Phys Sci 20:1061–1075

    Google Scholar 

  • Venkateswarlu Y, Ramesh P, Reddy NS (1998) Chemical and biological aspects of the sponge genus Dysidea, a review. Nat Prod Sci 4:115–129

    CAS  Google Scholar 

  • Verdín Padilla CJ, Carballo JL, Camacho ML (2010) A qualitative assessment of sponge-feeding organisms from the Mexican Pacific coast. Open Mar Biol J 4:39–46

    Article  Google Scholar 

  • Weber-van Bosse A (1921) Liste des algues du Siboga. II. Rhodophyceae. Première partie. Protoflorideae, Nemalionales, Cryptonemiales. Leiden 59:187–310

    Google Scholar 

  • Webster NS, Hil, RT (2007) Vulnerability of marine microbes on the great barrier reef to climate change. In: Johnson JE, Marshall PA (eds) Climate Change and the Great Barrier Reef. Great Barrier Reef Marine Park Authority and the Australian Greenhouse Office: Townsville, pp. 97–120

  • West JA (1979) The life history of Rhodochorton membranaceum, an Endozoic Red Alga. Bot Mar 22:111–116

    Article  Google Scholar 

  • White EB, Boney AD (1969) Experiments with some endophytic and endozoic Acrochaetium species. J Exp Mar Biol Ecol 3:246–274

    Article  Google Scholar 

  • Wilkinson CR (1983) Net primary productivity of coral reef sponges. Science 219:410–412

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529

    Article  CAS  Google Scholar 

  • Womersley HBS (1984) Flora of Australia supplementary series number 1. The marine benthic flora of Southern Australia. Part IIIA. Bangiophyceae and Florideophyceae (Acrochaetiales, Nemaliales, Gelidiales, Hildebrandiales and Gigartinales sensu lato). Australian Biological Resources Study, Canberra, 508 pp

  • Wulff JL (1997) Causes and consequences of differences in sponge diversity and abundance between the Caribbean and Eastern Pacific of Panama. In: Lessios HA, Macintyre IG (eds) Proceedings of the 8th International Coral Reef Symposium, Panama, pp 1377–1382

  • Wulff JL (2006a) Ecological interactions of marine sponges. Can J Zool 84:146–166

    Article  Google Scholar 

  • Wulff JL (2006b) Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biol Conserv 127:167–176

    Article  Google Scholar 

  • Wulff JL, Buss LW (1979) Do sponges help hold coral reefs together? Nature 281:474–475

    Article  Google Scholar 

  • Zintzen V, Kerckhof F (2009) The sponge-inhabiting barnacle Acasta spongites (Poli, 1795) (Crustacea, Cirripedia), a first record for the southern North Sea, how artificial habitats may increase the range of a species. Belg J Zool 139:166–168

    Google Scholar 

  • Zintzen V, Norro A, Massin C, Mallefet J (2008) Temporal variation of Tubularia indivisa (Cnidaria, Tubulariidae) and associated epizoites on artificial habitat communities in the North Sea. Mar Biol 153:405–420

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted with Dr. Caicci (University of Padova) for his support in preparing samples for TEM. We are grateful to Prof. Giordano and Dr. Norici of the Polytechnic University of Marche for the possibility to use the spectrophotometer and for their suggestions. The research has been funded by PRIN project (Progetti di Ricerca di Interesse Nazionale 2008) 2008YBEANX_002 - http://prin.miur.it/, AMER (AMER 2013–2015. Adriatic Marine Ecosystem Recovery) and Flagship Project RITMARE – The Italian Research for the Sea – coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research within the National Research Program 2011–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina G. Di Camillo.

Electronic Supplementary Material

Fig. S1

Synthesis of material and methods applied to perform the study. (GIF 83 kb)

High Resolution Image (TIFF 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Camillo, C.G., Cerrano, C., Romagnoli, T. et al. Living inside a sponge skeleton: the association of a sponge, a macroalga and a diatom. Symbiosis 71, 185–198 (2017). https://doi.org/10.1007/s13199-016-0426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-016-0426-7

Keywords

Navigation