Skip to main content
Log in

Mechanics of fibre fragmentation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fragmentation specimen consists of a single fibre embedded along the axis of a long narrow resin block. When the fibre is broken by a tensile load, either a lateral crack runs outwards into the resin, initiated by the break, or a debond (or equivalently a cylindrical crack in the resin) propagates along the fibre. Debonding always occurs with thin fibres. Strain energy release rates have now been calculated, analytically for long debonds and by FEA for short ones. The force to propagate a debond is found to increase as the debond grows, reaching a final value, termed “pull-out force”, that is higher for softer fibres. If this force exceeds the strength of the fibre, then the fibre breaks again. This is the proposed mechanism of fibre fragmentation. For weakly-bonded, stiff fibres, the inferred minimum distance between breaks, i.e. the critical fragment length, is deduced to be of the order of the geometric mean of the radii of fibre and resin block, about 0.1–0.5 mm for typical fragmentation specimens, and it increases as the ratio of fibre stiffness to resin block stiffness increases, in agreement with observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13 (1965) 329.

    Article  CAS  Google Scholar 

  2. A. N. Gent, G. S. Fielding-Russell, D. I. Livingston and D. W. Nicholson, J. Mater. Sci. 16 (1981) 949.

    Article  Google Scholar 

  3. A. N. Gent and G. L. Liu, ibid.26 (1991) 2467.

    Article  CAS  Google Scholar 

  4. A. N. Gent and O. H. Yeoh, ibid.17 (1982) 1713.

    Article  CAS  Google Scholar 

  5. A. N. Gent and S. Y. Kaang, Rubber Chem. Technol. 62 (1989) 757.

    Article  CAS  Google Scholar 

  6. A. T. Dibenedetto and P. J. Lex, Polym. Eng. Sci. 29 (1989) 543.

    Article  CAS  Google Scholar 

  7. W. D. Bascom and R. M. Jensen, J. Adhesion 19 (1986) 219.

    Article  CAS  Google Scholar 

  8. C. Baxevanakis, D. Jenlin and D. Valentin, Comp. Sci. Tech. 48 (1993) 47.

    Article  CAS  Google Scholar 

  9. A. N. Netravali, P. Schwartz and S. L. Phoenix, Polym. Compos. 10 (1989) 385.

    Article  CAS  Google Scholar 

  10. E. I. M. Asloun, M. Nardin and J. Schultz, J. Mater. Sci. 24 (1989) 1835.

    Article  CAS  Google Scholar 

  11. A. N. Gent and C. Wang, J. Mater. Sci. 27 (1992) 2539.

    Article  CAS  Google Scholar 

  12. Idem, ibid.,28 (1993) 2494.

    Article  Google Scholar 

  13. J. G. Williams, “Fracture Mechanics of Polymers” (Wiley, New York, 1984) p. 30.

    Google Scholar 

  14. K. J. Bathe, “ADINA: A Finite Element Program for Automatic Dynamic Incremental Non-Linear Analysis”, Report No. 82448-1 (Massachusetts Institute of Technology, Cambridge, Massachusetts, 1987).

    Google Scholar 

  15. M. Nardin, A. El Maliki and J. Schultz, J. Adhesion 40 (1993) 93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gent, A.N., Chang, Y.W., Nardin, M. et al. Mechanics of fibre fragmentation. Journal of Materials Science 31, 1707–1714 (1996). https://doi.org/10.1007/BF00372182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372182

Keywords

Navigation