Skip to main content
Log in

Fluorescence measurements under aerobic and anaerobic conditions on Pichia stipitis, Pachysolen tannophilus and Candida utilis grown on D-xylose

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Batch growth of the yeasts Candida utilis, Pachysolen tannophilus and Pichia stipitis on 1% D-xylose was monitored using a commercial fluorosensor with an excitation wavelength of 340 nm and a detection wavelength of 460 nm. Step changes in oxygen concentration were made and in the presence of 0.3 g/l of xylose, step changes from aerobic to anaerobic conditions resulted in an increase of the fluorescence level by about 40% for the non-fermentative yeast C. utilis. However, the increases of the fluorescence levels for P. tannophilus and P. stipitis stayed below 10%. These measurements indicate better control of (or better redox balance for) intracellular NADH concentration in P. tannophilus and P. stipitis than in C. utilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F NFU:

fluorescence

F 0 NFU:

initial fluorescence

ΔF NFU:

final fluorescence difference

t s:

time

τ s:

time constant

References

  1. Prior, B. A.; Kilian, S. G.; du Preez, J. C.: Fermentation of D-xylose by the yeasts Candida shehatae and Pichia stipitis. Prospects and problems. Proc. Biochem. Febr. (1989) 21–32

  2. Jeffries, T. W.: Utilization of xylose by bacteria, yeasts and fungi. Adv. in Biochem. Eng. Biotechnol. 27 (1983) 1–32

    Google Scholar 

  3. Slininger, P. J.; Bothast, R. J.; van Cauwenberge, J. E.; Kurtzman, C. P.: Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol. Bioeng. 24 (1982) 371–384

    Google Scholar 

  4. Slininger, P. J.; Bothast, R. J.; Okos, M. R.; Ladisch, M. R.: Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnol. Lett. 7 (1985) 431–436

    Google Scholar 

  5. Nunez, Ma. J.; Sanroman, A.; Lopez, E.; Vazquez, G.; Lema, J. M.: The D-xylose fermenting capacities of immobilized Pichia stipitis and Pachysolen tannophilus. Biotechnol. Lett. 11 (1989) 353–358

    Google Scholar 

  6. Bruinenberg, P. M.; de Bot, P. H. M.; van Dijken, J. P.; Scheffers, W. A.: The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur. J. Appl. Microbiol. Biotechnol. 18 (1983) 287–292

    Google Scholar 

  7. Bruinenberg, P. M.; de Bot, P. H. M.; van Dijken, J. P.; Scheffers, W. A.: NADH-linked aldose reductase: The key to anaerobic alcoholic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol. 19 (1984) 256–260

    Google Scholar 

  8. du Preez, J. C.; van Driessel, B.; Prior, B. A.: Effect of aerobiosis on fermentation and key enzyme levels during growth of Pichia stipitis, Candida shehatae and Candida tenuis on D-xylose. Arch. Microbiol. 152 (1989 b) 143–147

    Google Scholar 

  9. Scheper, Th.; Schügerl, K.: Culture fluorescence studies on aerobic continuous cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 23 (1986) 440–444

    Google Scholar 

  10. Scheper, Th.; Lorenz, Th.; Schmidt, W.; Schügerl, K.: On-line measurement of culture fluorescence for process monitoring and control of biotechnological processes. Ann. N.Y. Acad. Sci. 506 (1987) 431–445

    Google Scholar 

  11. Harrison, D. E. F.; Chance, B.: Fluorimetric technique for monitoring changes in the level of reduced nicotinamide nucleotides in continuous cultures of microorganisms. Appl. Microbiol. 19 (1970) 446–450

    Google Scholar 

  12. Rieger, M.: Untersuchung zur Regulation von Glykolyse und Atmung in Saccharomyces cerevisiae. PhD thesis, ETH Zürich Switzerland 1983

    Google Scholar 

  13. Rao, G.; Mutharasan, R.: NADH levels and solventogenesis in Clostridium acetobutylicum: new insights through culture fluorescence. Appl. Microbiol. Biotechnol. 30 (1989) 59–66

    Google Scholar 

  14. Armiger, W. B.; Forro, J. F.; Montalvo, L. M.; Lee, J. F.: The interpretation of on-line measurements of intracellular NADH in fermentation processes. Chem. Eng. Commun. 45 (1986) 197–206

    Google Scholar 

  15. Grosz, R.; Stephanopoulos, G.: Physiological, biochemical, and mathematical studies of micro-aerobic continuous ethanol fermentation by saccharomyces cerevisiae. II. Intracellular metabolite and enzyme assays at steady state chemostat cultures. Biotechnol. Bioeng. 36 (1990) 1020–1029

    Google Scholar 

  16. Lidén, G.; Larsson, C.; Gustafsson, L.; Niklasson, C.: A calorimetric and fluorescence study of batch cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 31 (1989) 355–357

    Google Scholar 

  17. Delgenes, J. P.; Moletta, R.; Navarro, J. M.: Fermentation of D-xylose, D-glucose, L-arabinose mixture by Pichia stipitis: Effect of the oxygen transfer rate on fermentation performance. Biotechnol. Bioeng. 34 (1989) 398–402

    Google Scholar 

  18. du Preez, J. C.; Prior, B. A.; Monteiro, A. M. T.: The effect of aeration on xylose fermentation by Candida shehatae and Pachysolen tannophilus. Appl. Microbiol. Biotechnol. 19 (1984) 261–266

    Google Scholar 

  19. Coppella, S. J.; Rao, G.: Practical considerations in the measurement of culture fluorescence. Biotechnol. Prog. 6 (1990) 398–401

    Google Scholar 

  20. Bailey, J. E.; Ollis, D. F.: Biochemical engineering fundamentals. 2nd ed., New York: McGraw Hill 1986

    Google Scholar 

  21. Coughanowr, D. R.; Koppel, L. B.: Process systems analysis and control. Tokyo: McGraw-Hill 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidén, A.G., Niklasson, C. Fluorescence measurements under aerobic and anaerobic conditions on Pichia stipitis, Pachysolen tannophilus and Candida utilis grown on D-xylose. Bioprocess Engineering 7, 219–224 (1992). https://doi.org/10.1007/BF00369549

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369549

Keywords

Navigation