Skip to main content

Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift

  • Protocol
  • First Online:
Reactive Oxygen Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2202))

Abstract

The budding yeast Saccharomyces cerevisiae is a facultative organism that is able to utilize both anaerobic and aerobic metabolism, depending on the composition of carbon source in the growth medium. When glucose is abundant, yeast catabolizes it to ethanol and other by-products by anaerobic fermentation through the glycolysis pathway. Following glucose exhaustion, cells switch to oxygenic respiration (a.k.a. “diauxic shift”), which allows catabolizing ethanol and the other carbon compounds via the TCA cycle and oxidative phosphorylation in the mitochondria. The diauxic shift is accompanied by elevated reactive oxygen species (ROS) levels and is characterized by activation of ROS defense mechanisms. Traditional measurement of the diauxic shift is done through measuring optical density of cultures grown in a batch at intermediate time points and generating a typical growth curve or by estimating the reduction of glucose and accumulation of ethanol in growth media over time. In this manuscript, we describe a method for determining changes in ROS levels upon yeast growth, using carboxy-H(2)-dichloro-dihydrofluorescein diacetate (carboxy-H(2)-DCFDA). H2-DCFDA is a widely used fluorescent dye for measuring intracellular ROS levels. H2-DCFDA enables a direct measurement of ROS in yeast cells at intermediate time points. The outcome of H2-DCFDA fluorescent readout measurements correlates with the growth curve information, hence providing a clear understanding of the diauxic shift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  CAS  Google Scholar 

  2. Agarwal S, Sharma S, Agrawal V et al (2005) Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res 39:55–62

    Article  CAS  Google Scholar 

  3. Drakulic T, Temple MD, Guido R et al (2005) Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5:1215–1228

    Article  CAS  Google Scholar 

  4. Moraitis C, Curran BP (2004) Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 21:313–323

    Article  CAS  Google Scholar 

  5. Entian KD, Barnett JA (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17:506–510

    Article  CAS  Google Scholar 

  6. Boy-Marcotte E, Perrot M, Bussereau F et al (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180:1044–1053

    Article  CAS  Google Scholar 

  7. Duenas-Sanchez R, Gutierrez G, Rincon AM et al (2012) Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers’ strains. FEMS Yeast Res 12:625–636

    Article  CAS  Google Scholar 

  8. Karpichev IV, Small GM (1998) Global regulatory functions of Oaf1p and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol Cell Biol 18:6560–6570

    Article  CAS  Google Scholar 

  9. Haurie V, Perrot M, Mini T et al (2001) The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 276:76–85

    Article  CAS  Google Scholar 

  10. Hardwick JS, Kuruvilla FG, Tong JK et al (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96:14866–14870

    Article  CAS  Google Scholar 

  11. Blom J, De-Mattos MJ, Grivell LA (2000) Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p. Appl Environ Microbiol 66:1970–1973

    Article  CAS  Google Scholar 

  12. Igual JC, Navarro B, Igual JC (1996) Respiration and low cAMP-dependent protein kinase activity are required for high-level expression of the peroxisomal thiolase gene in Saccharomyces cerevisiae. Mol Gen Genet 252:446–455

    PubMed  CAS  Google Scholar 

  13. Ohlmeier S, Kastaniotis AJ, Hiltunen JK et al (2004) The Yeast mitochondrial proteome, a study of fermentative and respiratory growth. J Biol Chem 279:3956–3979

    Article  CAS  Google Scholar 

  14. Galdieri L, Mehrotra S, Yu S et al (2010) Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS 14:629–638

    Article  CAS  Google Scholar 

  15. Brauer MJ, Saldanha AJ, Dolinski K et al (2005) Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16:2503–2517

    Article  CAS  Google Scholar 

  16. Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368

    Article  CAS  Google Scholar 

  17. Gourlay CW, Ayscough KR (2005) Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci 118:2119–2132

    Article  CAS  Google Scholar 

  18. Rowe LA, Degtyareva N, Doetsch PW (2008) DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med 45:1167–1177

    Google Scholar 

  19. Eruslanov E, Kusmartsev S (2009) Identification of ROS using oxidized DCFDA and flow-cytometry. Advanced protocols in oxidative stress. Methods Mol Biol 594:57–72

    Google Scholar 

  20. Bramasole L, Sinha A, Gurevich S et al (2019) Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Redox Biol 20:533–543

    Google Scholar 

  21. Allen SA, Clark W, McCafferey JM et al (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Israel Science Foundation [grants no. 162/17 for E.P.] and the PBC Fellowship Program of the Israeli Council for Higher Education [for A.S.] for funding our studies. We thank Tomer Golan for critically reading and commenting the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elah Pick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sinha, A., Pick, E. (2021). Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift. In: Espada, J. (eds) Reactive Oxygen Species. Methods in Molecular Biology, vol 2202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0896-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0896-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0895-1

  • Online ISBN: 978-1-0716-0896-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics