Skip to main content
Log in

Ca2+ transport by opercular epithelium of the fresh water adapted euryhaline teleost, Fundulus heteroclitus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We examined transepithelial transport of Ca2+ across the isolated opercular epithelium of the euryhaline killifish adapted to fresh water. The opercular epithelium, mounted in vitro with saline on the serosal side and fresh water (0.1 mmol·l−1 Ca2+) bathing the mucosal side, actively transported Ca2+ in the uptake direction; net flux averaged 20–30 nmol·cm−2·h−1. The rate of Ca2+ uptake varied linearly with the density of mitochondria-rich cells in the preparations. Ca2+ uptake was saturable, apparent K 1/2 of 0.348 mmol·l−1, indicative of a multistep transcellular pathway. Ca2+ uptake was inhibited partially by apically added 0.1 mmol·l−1 La3+ and 1.0 mmol·l−1 Mg2+. Addition of dibutyryl-cyclic adenosine monophosphate (0.5 mmol·l−1)+0.1 mmol·l−1 3-isobutyl-l-methylxanthine inhibited Ca2+ uptake by 54%, but epinephrine, clonidine and isoproterenol were without effect. Agents that increase intracellular Ca2+, thapsigargin (1.0 μmol·l−1, serosal side), ionomycin (1.0 μmol·l−1, serosal side) and the calmodulin blocker trifluoperazine (50 μmol·l−1, mucosal side) all partially inhibited Ca2+ uptake. In contrast, apically added ionomycin increased mucosal to serosal unidirectional Ca2+ flux, indicating Ca2+ entry across the apical membrane is rate limiting in the transport. Verapamil (10–100 μmol·l−1, mucosal side), a Ca2+ channel blocker, had no effect. Results are consistent with a model of Ca2+ uptake by mitochondria rich cells that involves passive Ca2+ entry across the apical membrane via verapamil-insensitive Ca2+ channels, intracellular complexing of Ca2+ by calmodulin and basolateral exit via an active transport process. Increases in intracellular Ca2+ invoke a downregulation of transcellular Ca2+ transport, implicating Ca2+ as a homeostatic mediator of its own transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DASPEI :

2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide

db-cAMP :

dibutyryl-cyclic adenosine monophosphate

FW :

fresh water

G t :

transepithelial conductance

I sc :

short-circuit current

IBMX :

3-isobutyl-1-methylxanthine

SW :

sea water

TFP :

trifluoperazine

V t :

transepithelial potential

References

  • Cano TM, Perry SF, JC Fenwick (1994) Cholinergic control of stanniocalcin release in the rainbow trout, Oncorhynchus mykiss, and the American eel Anguilla rostrata. Gen Comp Endocrinol 94: 1–10

    Article  PubMed  Google Scholar 

  • Clapham DE, Neher E (1984) Trifluoperazine reduces inward ionic currents and secretion by separate mechanisms in bovine chromaffin cells. J Physiol London 353: 544–564

    Google Scholar 

  • Donald JA (1989) Adrenaline and branchial nerve stimulation inhibit 45Ca influx into the gills of rainbow trout, Salmo gairdneri. J Exp Biol 141: 441–445

    Google Scholar 

  • Flik G, Wendelaar Bonga SE, Fenwick JC (1985) Active Ca2+ transport in plasma membranes of branchial epithelium of the north American eel, Anguilla rostrata LeSueur. Biol Cell 55: 265–272

    PubMed  Google Scholar 

  • Flik G, Schoenmakers TJM, Groot JA, Os CH van, Wendelaar Bonga SE (1990) Calcium absorption by fish intestine: the involvement of ATP- and sodium-dependent calcium extrusion mechanisms. J Membr Biol 113: 13–22

    PubMed  Google Scholar 

  • Flik G, Velden JA van der, Dechering KJ, Verbost PM, Schoenmakers TJM, Kolar ZI, Wendelaar Bonga SE (1993) Ca2+ and Mg2+ transport in gills and gut of tilapia, Oreochromis mossambicus: a review. J Exp Zool 265: 356–365

    Google Scholar 

  • Foskett JK, Scheffey C (1982) The chloride cell: definitive identification as the salt-secretory cell in teleosts. Science 215: 164–166

    PubMed  Google Scholar 

  • Hogstrand C, Wilson RW, Polgar D, Wood CM (1994) Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterborne zinc. J Exp Biol 186: 55–73

    PubMed  Google Scholar 

  • Kaneko T, Hirano T (1993) Role of prolactin and somatolactin in calcium regulation in fish. J Exp Biol 184: 31–45

    Google Scholar 

  • Karnaky KJ Jr, Kinter LB, Kinter WB, Stirling CE (1976) Teleost chloride cell. II. Autoradiographic localization of gill Na+, K+-ATPase in killifish (Fundulus heteroclitus) adapted to low and high salinity environments. J Cell Biol 70; 157–177

    Article  PubMed  Google Scholar 

  • Karnaky KJ Jr (1986) Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am Zool 26: 209–224

    Google Scholar 

  • Lafeber FPJG, Flik G, Wendelaar Bonga SE, Perry SF (1988) Hypocalcin from Stannius corpuscles inhibits gill calcium uptake in trout. Am J Physiol 254: R891-R896

    PubMed  Google Scholar 

  • Liu C, Hermann TE (1978) Characterization of ionomycin as a calcium ionophore J Biol Chem 253: 5892–5894

    PubMed  Google Scholar 

  • Marshall WS (1977) Transepithelial potential and short-circuit current across the isolated skin of Gillichthys mirabilis (Teleostei: Gobiidae), acclimated to 5% and 100% seawater, J Comp Physiol 114: 157–165

    Google Scholar 

  • Marshall WS (1986) Independent Na+ and Cl active transport by urinary bladder epithelium of brook trout. Am J Physiol 250: R227-R234

    PubMed  Google Scholar 

  • Marshall WS, Bryson SE, Garg G (1993), 277-1 inhibition of Cl−1 transport by opercular epithelium is mediated by intracellular Ca2+. Proc Natl Acad Sci USA 90: 5504–5508

    PubMed  Google Scholar 

  • Marshall WS, Bryson SE, Wood CM (1992) Calcium transport by isolated skin of rainbow trout. J Exp Biol 166: 297–316

    PubMed  Google Scholar 

  • Marshall WS, Nishioka RS (1980) Relation of mitochondria-rich chloride cells to active chloride transport in the skin of a marine teleost. J Exp Zool 214: 147–156

    PubMed  Google Scholar 

  • Mashiko K, Jozuka K (1964) Absorption and excretion of calcium by teleost fishes with special reference to routes followed. Annot Zool Jpn 37: 41–50

    Google Scholar 

  • Mayer-Gostan N, Bornancin M, DeRenzis G, Naon R, Yee JA, Shew RL, Pang PKT (1983) Extraintestinal calcium uptake in the killifish, Fundulus heteroclitus. J Exp Zool 227: 329–338

    PubMed  Google Scholar 

  • McCormick SD, Hasegawa S, Hirano T (1992) Calcium uptake in the skin of a freshwater teleost. Proc Natl Acad Sci USA 89: 3635–3638

    PubMed  Google Scholar 

  • Pang PKT, Griffith RW, Maetz J, Pic P (1980) Calcium uptake in fishes. In: Lahlou B (ed) Epithelial transport in the lower vertebrates. Cambridge University Press, Cambridge, pp 121–132

    Google Scholar 

  • Payan P, Girard JP, Mayer-Gostan N (1984) Branchial ion movements in teleosts: the roles of respiratory and chloride cells. In: Hoar WS, Randall DJ (eds) Fish physiology, vol, 10B. Academic Press, New York, pp 39–63

    Google Scholar 

  • Payan P, Mayer-Gostan N, Pang PKT (1981) Site of calcium uptake in the freshwater trout gill. J Exp Zool 216: 345–347

    PubMed  Google Scholar 

  • Péqueux A, Gilles R, Marshall WS (1988) NaCl transport in gills and related structures. In: Greger R (ed) Advances in comparative and Environmental physiology, vol I. Springer, Heidelberg pp 1–73

    Google Scholar 

  • Perry SF, Flik G (1988) Characterization of branchial transepithelial calcium fluxes in the freshwater trout (Salmo gairdneri). Am J Physiol 254: R491-R498

    PubMed  Google Scholar 

  • Perry SF, Verbost PM, Vermette MG, Flik G (1988) Effects of epinephrine on branchial and renal calcium handling in the rainbow trout. J Exp Zool 246: 1–9

    PubMed  Google Scholar 

  • Perry SF, Wood CM (1985) Kinetics of branchial calcium uptake in the rainbow trout: effects of acclimation to various external calcium levels. J Exp Biol 116: 411–433

    Google Scholar 

  • Philpott CW (1966) The use of horseradish peroxidase to demonstrate functional continuity between the plasmalemma and the unique tubular system of the chloride cell. J Cell Biol 31: 86A

  • Ussing HH (1949) The distinction by means of tracers between active transport and diffusion. Acta Physiol Scand 19: 43–56

    Google Scholar 

  • Verbost PM, Flik G, Lock RAC, Wendelaar Bonga SE (1987) Cadmium inhibition of Ca2+ uptake in rainbow trout gills. Am J Physiol 253: R216-R221

    PubMed  Google Scholar 

  • Verbost PM, van Roolj J, Filk G, Lock RAC, Wendelaar Bonga SE (1989) The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J Exp Biol 145: 185–197

    Google Scholar 

  • Wood CM, Marshall WS (1994) Ion balance, acid-base regulation and chloride cell function in the common killifish Fundulus heteroclitus, a freely euryhaline estuarine teleost. Estuaries 17: 1A: 34–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Hirano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, W.S., Bryson, S.E., Burghardt, J.S. et al. Ca2+ transport by opercular epithelium of the fresh water adapted euryhaline teleost, Fundulus heteroclitus . J Comp Physiol B 165, 268–277 (1995). https://doi.org/10.1007/BF00367310

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367310

Key words

Navigation