Skip to main content
Log in

Flow through variably saturated soils

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The equation of flow through variably saturated porous media is discretized via the Galerkin finite element formulation. The discretization is coupled with an approach for mesh generation and optimization of the node numbering scheme. Sensitivity analysis showed that the solution behavior is controlled by dimensionless quantities equivalent to Peclet and Courant numbers. For the form of equation investigated, no universal limiting values of Pe and Cr can be established because the values of these parameters depend on both the constitutive relations used and on initial conditions. For more efficient solution of the problem, a deformation scheme of the computational mesh is proposed, which accounts for the limiting Peclet and Courant numbers and for the shape of the deformed elements. Comparisons with other solutions showed that the numerical scheme performs very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriola, L. M. (1986): Finite element solution of the unsaturated flow equation using hierarchical basis functions. Proc. Sixth Int. Conf. Finite Elements in Water Resources, Lisboa, Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier

    Google Scholar 

  • Bishop, A. W. (1960). The principle of effective stress. Publ. 32, pp. 1–5, Norwegian Geotech. Inst., Oslo, Norway

    Google Scholar 

  • Bishop, A. W.; Blight, G. E. (1963): Some aspects of effective stress in saturated and partially saturated soils. Geotechnique, 13/1, 177–197

    Google Scholar 

  • Borja, R. I. (1992): Free boundary, fluid flow, and seepage forces in excavations. J. Geotechnical Eng. ASCE 118/1, 125–146

    Google Scholar 

  • Campbell, G. S. (1974): A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117, 311–314

    Google Scholar 

  • Celia, M. A.; Bouloutas, E. T.; Zarba, R. L. (1990): A general, mass-conservative numerical solution for the unsaturated flow equation. Water Resour. Res. 26/7, 1483–1496

    Google Scholar 

  • Clapp, R. B.; Horberger, G. M. (1978): Empirical equations for some soil hydraulic properties. Water Resour. Res. 14/4, 601–604

    Google Scholar 

  • Collins, R. J. (1973): Bandwidth reduction by automatic renumbering. Int. J. Num. Meth. Eng. 6, 345–356

    Google Scholar 

  • Cooley, R. L. (1983): Some new procedures for numerical solution of variably saturated flow problems. Water Resour. Res. 19/5, 1271–1285

    Google Scholar 

  • Duncan, J. M.; Byrne, P.; Wong, K. S.; Mabry, P. (1980): Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements of soil masses. Rep. No. UCB/GT/80-01, University of California, Berkeley

    Google Scholar 

  • Durocher, L. L.; Gasper, A. (1979): A versatile two-dimensional mesh generator with automatic bandwidth reduction, Computers and Structures 10, 561–575

    Google Scholar 

  • Elsworth, D.; Bai, M. (1992): Flow-deformation response of dual-porosity media. J. Geotechnical Engl. ASCE 118/1, 107–124

    Google Scholar 

  • Gelinas, R. J.; Doss, S. K.; Miller, K. (1981): The moving finite element method: Applications to general partial differential equations with multiple large gradients. J. Comp. Phys. 40, 202–249

    Google Scholar 

  • Gottardi, G.; Venutelli, M. (1992): Moving finite element model for one-dimensional infiltration in unsaturated soil. Water Resour. Res. 28, 3259–3267

    Google Scholar 

  • Huyakorn, P. S.; Pinder, G. F. (1983): Computational methods in subsurface flow. New York: Academic Press

    Google Scholar 

  • Huyakorn, P. S.; Thomas, S. D.; Thomson, B. M. (1984): Techniques for making finite elements competitive in modeling flow in variably saturated porous media. Water Resour. Res. 20/8, 1099–1115

    Google Scholar 

  • Jensen, O. K.; Finlayson, B. A. (1980): Solution of the transport equations using a moving coordinate system: Advan. Water Resour. 3, 9–18

    Google Scholar 

  • Kandil, H.; Miller, C. T.; Skaggs, R. W. (1992): Modeling long-term solute transport in drained unsaturated zones. Water Resour. Res. 28/10, 2799–2809

    Google Scholar 

  • Leake, S. A. (1990): Interbed storage and compaction in models of regional groundwater flow. Water Resour. Res. 26/9, 1939–1950

    Google Scholar 

  • Lynch, D. R.; O'Neill, K. (1980): Elastic grid deformation for moving boundary problems in two space dimensions. Finite Elem. Water Resour. 3. London: Pentech

    Google Scholar 

  • Lynch, D. R.; O'Neill, K. (1981): Continuously deforming finite elements for the solution of parabolic problems with and without phase change. Int. J. Num. Meth. Eng. 17, 81–96

    Google Scholar 

  • Lynch, D. R.; Gary, W. G. (1978): Finite element simulation of shallow water problems with moving boundaries. Finite Elem. Water Resour. 2. London: Pentech

    Google Scholar 

  • Lynch, D. R.; Gary, W. G. (1980): Finite element simulation of flow in deforming regions. J. Comp. Phys. 36, 135–153

    Google Scholar 

  • McMurdie, J. L.; Day, P. R. (1960): Slow tests under soil moisture suction. Soil Sci. Soc. Amer. Proc. 24, 441–444

    Google Scholar 

  • Morel-Seytoux, H. J. (1987): Multiphase flows in porous media. In: Novak, P. (ed.) Developments in hydraulic engineering-4, London: Elsevier

    Google Scholar 

  • Narashiman, T. N.; Witherspoon, P. A. (1977): Numerical model for saturated-unsaturated flow in deformable porous media, 1. Theory. Water Resour. Res. 13/3, 657–664.

    Google Scholar 

  • Neuman, S. P. (1973): Saturated-unsaturated seepage by finite elements. J. Hydr. Div. ASCE, 99/HY12, 2233–2290

    Google Scholar 

  • Neuman, S. P.; Feddes, R. A.; Bresler, E. (1974). Finite element simulation of flow in saturated-unsaturated soils considering water uptake by plants. Rep. Proj. ALOSWC-77. Hafia: Technion University

    Google Scholar 

  • Neuman, S. P.; Feddes, R. A.; Bresler, E. (1975): Finite element analysis of two dimensional flow in soils considering water uptake by roots, 1. Theory. Soil Sci. Soc. Amer. Proc. 39/2, 224–237

    Google Scholar 

  • O'Neill, K. (1981): Highly efficient, oscillation-free solution of the transport equation over long time and large spaces. Water Resour. Res. 17/6, 1665–1675

    Google Scholar 

  • Philip, J. R. (1955): Numerical solution of equations of the diffusion type with diffusivity concentration-dependent. Trans. Faraday Soc. 51, 885–892

    Google Scholar 

  • Philip, J. R. (1969): Theory of infiltration. Adv. Hydrosci. 5, 216–296

    Google Scholar 

  • Ralston, A.; Rabinowitz, P. (1989): A first course in numerical analysis. New York: McGraw-Hill

    Google Scholar 

  • Safai, N. M.; Pinder, G. F. (1979): Vertical and horizontal land deformation in a desaturating porous medium. Adv. Water. Resour. 2, 19–25

    Google Scholar 

  • Sehayek, L. (1987): Unsaturated-saturated flow of liquids through deformable soils. Numerical solution and applications to hazardous waste landfills, lagoon leaks and associated spills. Ph.D. Thesis, Rutgers University, New Brunswick, N.J.

  • Terzaghi, K. (1925): Principles of soil mechanics, A summary of experimental results of clay and sand. Eng. News Rec. 3–98

  • Valliappan, S.; Khalili-Naghadeh, N. (1990): Flow through fissured porous media with deformable matrix. Int. J. Numer. Methods Eng. Sci. 29, 1079–1094

    Google Scholar 

  • Vichnevetsky, R. (1991): Computer methods for partial differential equations. New York: Prentice-Hall, Engelwood Cliffs

    Google Scholar 

  • Vreugdenhil, C. (1989): Computational Hydraulics. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Wu, E. R. (1979): Some findings is using the program “A versatile two-dimensional mesh generator with automatic bandwidth reduction”. Comput. Struct. 12, 181–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. E. Beskos, March 10, 1993

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demetracopoulos, A.C., Sehayek, L. Flow through variably saturated soils. Computational Mechanics 12, 361–375 (1993). https://doi.org/10.1007/BF00364244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364244

Keywords

Navigation