Skip to main content
Log in

Role of liver glutathione in 1,1-dichloroethylene metabolism and hepatotoxicity in intact rats and isolated perfused rat liver

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The liver glutathione content was measured after oral administration of 1,1-dichloroethylene (vinylidene chloride = VDC; dissolved in olive oil) and its significance for the metabolism and hepatotoxicity of VDC was investigated. After treatment with 1000 mg/kg VDC p.o., glutathione decreased to 33% of the control values within 4 h but returned to the control level after 24 h. An identical fall in glutathione after VDC administration was found to occur in animals which had been fasted for 18 h. In these animals the baseline values of glutathione were lowered by 21%. The depletion of glutathione was dependent on the dosage of VDC.

The conversion rate of VDC by the isolated perfused livers was 7.64 μmoles/g liver after 3 h-perfusion, if 5000 ppm of VDC were supplied in the gas phase. Lowering the glutathione content to 15% of the normal value (by diethylmaleate, 25 μmoles added directly to the perfusate) resulted in a reduction of VDC conversion by 18%. Furthermore the viability (with the lactate/pyruvate ratio serving as the parameter) of the liver was distinctly depressed.

No effect on viability nor on metabolization rate was noted when perfusing the livers of 18-h fasted animals. The concentrations of the glutamate-oxaloacetate transaminase (SGOT) and glutamate-pyruvate transaminase (SGPT) in the perfusate failed to show an increase. These findings indicate that there is no correlation between the liver glutathione level and the increased lethality of VDC in fasted rats.

Zusammenfassung

Der Leberglutathiongehalt wird nach oraler Gabe von 1,1-Dichloräthylen (Vinylidenchlorid = VDC; in Olivenöl gelöst) gemessen und seine Bedeutung für Metabolismus und Hepatotoxizität von VDC untersucht. Nach oraler Applikation von 1000 mg/kg VDC sinkt Glutathion in 4 Std auf 33% der Kontrollwerte ab. Nach 24 Std sind die Kontrollwerte wieder erreicht. Der Abfall ist bei 18 Std-Nüchterntieren, die um 21% erniedrigte Ausgangswerte aufweisen, gleich. Die Glutathiondepletion ist dosisabhängig.

Die Metabolisierungsrate von VDC in der isoliert perfundierten Leber beträgt nach 3 Std Perfusion, mit 5000 ppm VDC in der Gasphase, 7,64 μmol/g Leber. Die Rate ist um 18% erniedrigt, wenn der Glutathiongehalt mit Diäthylmaleat (25 μmol direkt ins Perfusat) auf 15% der Kontrollwerte gesenkt wird. Unter diesen Perfusionsbedingungen wird nach Diäthylmaleatzugabe die Funktionsfähigkeit (als Parameter hierfür dient der Lactat/Pyruvatquotient) der Leber eingeschränkt.

Die Funktionsfähigkeit der Leber und die Metabolisierungsrate von VDC wird durch 18stündiges Fasten der Tiere nicht beeinflußt. Die Konzentration von Serumglutamatoxalacetattransaminase (SGOT) und Serumglutamatpyruvattransaminase (SGPT) im Perfusat ist nicht erhöht. Diese Befunde deuten darauf hin, daß keine Beziehung zwischen dem Leberglutathiongehalt und der erhöhten Letalität von VDC mit Nüchterntieren besteht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartsch, H., Malaveille, C., Montesano, E., Tomatis, L.: Tissue-mediated mutagenicity of vinylidene chloride and 2-chlorobutadiene in Salmonella typhimurium. Nature 255, 641–643 (1975)

    Google Scholar 

  • Bergmeyer, H. U.: Methoden der enzymatischen Analyse, 3. Aufl., Bd. II, S. 2491, 1510. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Bonse, G., Urban, Th.: Oxidative metabolism of chlorinated ethylenes. Naunyn-Schmiedebergs Arch. Pharmacol. 287 (Suppl.), R101 (1975)

    Google Scholar 

  • Bonse, G., Urban, Th., Reichert, D., Henschler, D.: Chemical reactivity, metabolic oxirane formation and biological reactivity of chlorinated ethylenes in the isolated perfused rat liver preparation. Biochem. Pharmacol. 24, 1829–1834 (1975)

    Google Scholar 

  • Boyland, E., Chasseaud, L. F.: The effect of some carbonyl compounds on rat liver glutathione levels. Biochem. Pharmacol. 19, 1526–1528 (1970)

    Google Scholar 

  • Ellman, G. L.: Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959)

    Google Scholar 

  • Greim, H., Bonse, G., Radwan, Z., Reichert, D., Henschler, D.: Mutagenicity in vitro and potential carcinogenicity of chlorinated ethylenes as a function of metabolic oxirane formation. Biochem. Pharmacol. 24, 2013–2017 (1975)

    Google Scholar 

  • Heidelberger, C.: Chemical carcinogenesis. Ann. Rev. Biochem. 44, 79–121 (1975)

    Google Scholar 

  • Jaeger, R. J., Coffman, L.: Hepatotoxicity of 1,1-dichloroethylene. A proposed mechanism. Abstr. Sixteenth Ann. Meet. Soc. Tox., p. 113. Toronto 1977

  • Jaeger, R. J., Conolly, R. B., Murphy, S. D.: Effect of 18 h fast and glutathione depletion on 1,1-dichloroethylene-induced hepatotoxicity and lethality in rats. Exp. Mol. Pathol. 20, 187–198 (1974)

    Google Scholar 

  • Jerina, D. M., Daly, J. W.: Arene oxides: A new aspect of drug metabolism. Science 185, 573–582 (1974)

    Google Scholar 

  • Jones, B. K., Hathway, D. E.: The biological fate of vinylidene chloride in rats. Chem.-Biol. Interact. 20, 27–41 (1978)

    Google Scholar 

  • Leibman, K. C., Ortiz, E.: Abstr. Sixth Int. Cong. Pharmacol., p. 257. Helsinki 1975

  • Maruyama, E., Kojima, K., Higashi, T., Sakamoto, Y.: Effect of diet on liver glutathione and glutathione reductase. J. Biochem. 63, 398–399 (1968)

    Google Scholar 

  • Miller, L. L., Bly, C. G., Watson, M. L., Bale, W. F.: The dominant role of the liver in plasma protein synthesis. J. Exp. Med. 94, 431–453 (1951)

    Google Scholar 

  • Mitchell, J. R., Potter, W. Z., Hinson, J. A., Snodgrass, W. R., Timbrell, J. A., Gillette, J. R.: In: Handbook of Experimental Pharmacology, Vol. 28/3, p. 383. Berlin-Heidelberg-New York: Springer 1975

    Google Scholar 

  • Oesch, F.: Mammalian epoxide hydrases: Inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3, 305–340 (1973)

    Google Scholar 

  • Reichert, D., Bashti, N.: Metabolism and disposition of 1,1-dichloroethylene in the isolated blood-perfused liver of the rat. Naunyn-Schmiedebergs Arch. Pharmacol. 293 (Suppl.), R255 (1976)

    Google Scholar 

  • Reichert, D., Henschler, D.: Uptake and hepatotoxicity of 1,1-dichloroethylene by the isolated blood-perfused rat liver. Int. Arch. Occup. Environ. Health 41, 169–178 (1978)

    Google Scholar 

  • Schimassek, H.: Metabolite des Kohlenhydratstoffwechsels der isoliert perfundierten Rattenleber. Biochem. Z. 336, 460–467 (1963)

    Google Scholar 

  • Sims, P., Grover, P. L.: Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. Adv. Cancer Res. 20, 165–274 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichert, D., Werner, H.W. & Henschler, D. Role of liver glutathione in 1,1-dichloroethylene metabolism and hepatotoxicity in intact rats and isolated perfused rat liver. Arch. Toxicol. 41, 169–178 (1978). https://doi.org/10.1007/BF00354088

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354088

Key words

Navigation