Skip to main content
Log in

Interfacial debonding and fibre pull-out stresses

Part III Interfacial properties of cement matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Following the development of an improved theoretical analysis of fibre pull-out on the basis of the concept of fracture mechanics in Part II of this paper, the theory has been successfully used to characterize the debonding and frictional pull-out behaviour in cement mortar matrix composites reinforced with steel and glass fibres. It is shown from the plots of partial debond stress, σ pd , versus debond length, ℓ, that these composites are typical of mechanical bonds at the interface. For the steel fibre-cement matrix composites, the theory overestimates the post-debond frictional pull-out stress, σfr, particularly for long embedded fibre length, L, otherwise the prediction agrees well with the experiments for the maximum debond stress, σ *d . This seems to be a direct result of decay of frictional bonds at the interface region after debonding due mainly to compaction of the porous cement mortar surrounding the fibre, effectively reducing the residual clamping stress, q 0, arising from shrinkage of the cement matrix. Therefore, a correct theoretical prediction is made for σfr using a lower value of q 0 while other parameters are kept constant, which gives good agreement with experimental results. For glass fibre-cement matrix composites, an accelerated cure condition promotes rapid hydration of cement and densification of the matrix. This effectively improves the chemical as well as mechanical bonds at the fibre-matrix interface through the formation of CH crystals and large fibre-solid matrix contact area of the interface, and consequently ameliorating the interfacial properties, interfacial fracture toughness, G ic and q o in particular. Predictions of σ *d and σfr taking into account these changes due to cure condition, results in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. KIM and Y. W. MAI, in “Structure and Properties of Fibre Composites”, Vol. 13, edited by T. W. CHOU, (VCH, Weinheim, Germany, 1992) Ch 6, in press.

    Google Scholar 

  2. L. M. ZHOU, J. K. KIM and Y. W. MAI, J. Mater. Sci. 27 (1992), 3155.

    Article  CAS  Google Scholar 

  3. J. K. KIM, C. BAILLIE and Y. W. MAI, ibid. 27 (1992) 3143.

    Article  CAS  Google Scholar 

  4. L. M. ZHOU, J. K. KIM and Y. W. MAI, Comps. Sci. Technol. 45 (1992) 153.

    Article  CAS  Google Scholar 

  5. J. K. KIM, C. BAILLIE and Y. W. MAI, Scripta Metall. Mater. 25 (1991) 315.

    Article  CAS  Google Scholar 

  6. A. E. NAAMAN and S. P. SHAH, ASCE J. Struct. Div. 102 (1976) 1537.

    Google Scholar 

  7. M. MAAGE, Mater. Struct. 10 (1977) 297.

    Google Scholar 

  8. P. W. R. BEAUMONT and J. C. ALESZKA, J. Mater. Sci. 13 (1978) 1749.

    Article  CAS  Google Scholar 

  9. R. Y. GRAY, ibid. 19 (1984) 1680.

    Article  Google Scholar 

  10. J. A. MANDEL, S. WEI and S. SAID, ACI Mater. J. 12 (1987) 101.

    Google Scholar 

  11. Z. LI, B. MOBASHER and S. P. SHAH, J. Amer. Ceram. Soc. 74 (1991) 2156.

    Article  CAS  Google Scholar 

  12. P. BARTOS, Int. J. Cement Compos. 3 (1981) 159.

    Google Scholar 

  13. B. A. PROCTOR, D. R. OAKLEY and K. C. LITHERLAND, Composites 13 (1982) 173.

    Article  CAS  Google Scholar 

  14. R. C. De VEKEY and A. J. MAJUMDAR, Mag. Concr. Res. 20 (1968) 229.

    Article  Google Scholar 

  15. Idem, J. Mater. Sci. 5 (1970) 183.

    Article  Google Scholar 

  16. V. LAWS, A. A. LANGLEY and J. M. WEST, ibid. 21 (1986) 289.

    Article  Google Scholar 

  17. V. M. KARBHARI and D. J. WILKINS, ibid. 26 (1991) 5888.

    Article  Google Scholar 

  18. C. H. HSUEH, Mater. Sci. Engng A123 (1990) 1.

    Article  CAS  Google Scholar 

  19. Idem. ibid. A123 (1990) 67.

    Article  Google Scholar 

  20. D. J. PINCHIN and D. TABOR, Cement Concr. Res. 8 (1978) 139.

    Article  Google Scholar 

  21. Y. WANG, V. C. LI and S. BACKER, Int. J. Cem. Compos. Lightwt. Concr. 10 (1988) 143.

    Article  CAS  Google Scholar 

  22. A. E. NAAMAN, G. G. NARMUR, J. M. ALWIN and H. S. NAJM, ASCE, J. Struct. Engng 119 (1991) 2769.

    Article  Google Scholar 

  23. A. BENTUR, S. DIAMOND and S. MINDESS, J. Mater. Sci. 20 (1985) 3610.

    Article  CAS  Google Scholar 

  24. S. WEI, J. A. MANDEL and S. SAID, J. Amer. Concr. Inst. 83 (1986) 597.

    CAS  Google Scholar 

  25. M. S. STUCKE and A. J. MAJUMDAR, J. Mater. Sci. 11 (1976) 1019.

    Article  CAS  Google Scholar 

  26. L. B. GRESZCZUK, in “Interface in Composites”, ASTM STP 452 (American Society for Testing and Materials, Philadelphia, PA, 1969) pp. 42–58.

    Google Scholar 

  27. A. TAKAKU and R. G. C. ARRIDGE, J. Phys. D. Appl. Phys. 6 (1973) 2038.

    Article  CAS  Google Scholar 

  28. P. LAWRENCE, J. Mater. Sci. 7 (1972) 1.

    Article  CAS  Google Scholar 

  29. P. BARTOS, ibid. 15 (1980) 3122.

    Article  Google Scholar 

  30. V. LAWS, Composites 13 (1982) 145.

    Article  Google Scholar 

  31. A. E. NAAMAN, G. G. NARMUR, J. M. ALWAN and H. S. NAJM, ASCE J. Struct. Engng 119 (1991) 2791.

    Article  Google Scholar 

  32. J. K. MORRISON, S. P. SHAH and Y. S. JENQ, ASCE. J. Engng Mech. 114 (1988) 277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Zhou, L.M. & Mai, Y.W. Interfacial debonding and fibre pull-out stresses. JOURNAL OF MATERIALS SCIENCE 28, 3923–3930 (1993). https://doi.org/10.1007/BF00353200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353200

Keywords

Navigation