Skip to main content
Log in

Contactless measurement of the conductivity of II–VI epitaxial layers by means of the partially filled waveguide method

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the contactless determination of the conductivity, the mobility and the carrier concentration of II–VI semiconductors by means of the technique of the partially filled waveguide at a microwave frequency of 9 GHz. The samples are CdHgTe epitaxial layers, grown on CdZnTe substrates by molecular beam epitaxy. The conductivity is determined from the transmission coefficient of the sample in the partially filled waveguide. For the analysis of the experimental data, the complex transmission coefficient is calculated by a rigorous multi-mode matching procedure. By varying the conductivity of the sample, we obtain an optimum fit of the calculated data to the experimental results. Comparison with conductivity data determined by the van der Pauw method shows that our method allows to measure the conductivity with good accuracy. The behaviour of the transmission coefficient of the sample is discussed in dependence on the layer conductivity, the layer thickness and the dielectric constant of the substrate. The calculations require to consider in detail the distribution of the electromagnetic fields in the sample region. The usual assumption of a hardly disturbed TE10 mode cannot be used in our case. By applying a magnetic field in extraordinary Voigt configuration, galvanomagnetic measurements have been carried out which yield the mobility and thus the carrier concentration. These results are also in good agreement with van der Pauw transport measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Bicknell, N.C. Giles, J.F. Schetzina: Appl. Phys. Lett. 49, 1095 (1986)

    Google Scholar 

  2. R.N. Bicknell, N.C. Giles, J.F. Schetzina: Appl. Phys. Lett. 49, 1735 (1986)

    Google Scholar 

  3. K. Zanio: Cadmium Telluride. In Semiconductors and Semimetals, Vol. 13 (Academic, New York 1978)

    Google Scholar 

  4. W. Bauhofer: J. Phys. E: Sci. Instrum. 14, 934 (1981)

    Google Scholar 

  5. N.P. Ong: J. Appl. Phys. 48, 2935 (1977)

    Google Scholar 

  6. N.P. Ong, P. Monceau: Phys. Rev. B 16, 3443 (1977)

    Google Scholar 

  7. N.P. Ong, W. Bauhofer, C.J. Wei: Rev. Sci. Instrum. 52, 1367 (1981)

    Google Scholar 

  8. H.M. Altschuler: Dielectric Constant. In Handbook of Microwave Measurements, ed. by M. Sucher, J. Fox (Wiley, New York 1963)

    Google Scholar 

  9. K.H. Seeger: J. Appl. Phys. 63, 5439 (1988)

    Google Scholar 

  10. W. Jantz, T. Frey, K.H. Bachmann: Appl. Phys. A 45, 225 (1988)

    Google Scholar 

  11. R. Meisels, f. Kuchar: Z. Phys. B: Cond. Mat. 67, 443 (1987)

    Google Scholar 

  12. F. Kuchar: Festkörperprobleme 28, 45 (1988)

    Google Scholar 

  13. F. Koch: Surf. Sci. 58, 104 (1976)

    Google Scholar 

  14. F. Koch: Surf. Sci. 80, 110 (1979)

    Google Scholar 

  15. H. Lehmann, G. Nimtz, L.D. Haas, T. Jakobus: Appl. Phys. 25, 291 (1981)

    Google Scholar 

  16. G. Nimtz, R. Dornhaus, M. Schifferdecker, I. Shih, E. Tyssen: J. Phys. E: Sci. Instrum. 11, 1109 (1978)

    Google Scholar 

  17. J. Schwinger, D.S. Saxon: Discontinuities in Waveguides. In Documents of Modern Physics (Gordon and Breach, New York 1968)

    Google Scholar 

  18. S. Sridhar, D. Reagor, G. Gruner: Rev. Sci. Instrum. 56, 1946 (1985)

    Google Scholar 

  19. Tae Wan Kim, W.P. Beyermann, D. Reagor, G. Gruner: Rev. Sci. Instrum. 59, 1219 (1988)

    Google Scholar 

  20. W.V. McLevige, T. Itoh, R. Mittra: IEEE Trans. MTT-23, 788 (1975)

    Google Scholar 

  21. Feng Zheng-he: Science in China (Series A) 32, 983 (1989)

    Google Scholar 

  22. Xu Shanjia: J. Electron. 6, 232 (1989)

    Google Scholar 

  23. Xu Shanjia, Wu Xinzhang, P. Greiner, C.R. Becker, R. Geick: Int'l J. of Infrared and Millimeter Waves 13, 569 (1992)

    Google Scholar 

  24. R.S. Brazis, J.K. Furdyna, J.K. Pozela: Phys. Stat. Sol. (a) 53, 11 (1979); Phys. Stat. Sol. (a) 54, 11 (1979)

    Google Scholar 

  25. E.D. Palik, J.K. Furydna: Rep. Progr. Phys. 33, 1193 (1970)

    Google Scholar 

  26. I. Strzalkowski, S. Joshi, C.R. Crowell: Appl. Phys. Lett. 28, 350 (1976)

    Google Scholar 

  27. A. Waag, Y.S. Wu, R.N. Bicknell-Tassius, C. Gonser-Buntrock, G. Landwehr: J. Appl. Phys. 68, 212 (1990)

    Google Scholar 

  28. L.J. van der Pauw: Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  29. J. Brice, P. Capper (eds.): Properties of Mercury Cadmium Telluride, EMIDS Dataviews Series No.3 (INSPEC, London 1987) p. 29

    Google Scholar 

  30. K.S. Champlin, G.H. Glover: J. Appl. Phys. 37, 2355 (1966)

    Google Scholar 

  31. K.A. Harris, S. Hwang, Y. Lansari, J.W. Cook, Jr., J.F. Schetzina, M. Chu: J. Vac. Sci. Technol. A 5, 3085 (1987)

    Google Scholar 

  32. W. Scott: J. Appl. Phys. 43, 1055 (1972)

    Google Scholar 

  33. R.N. Bicknell-Tassius, S. Scholl, C. Becker, G. Landwehr: In High Magnetic Fields in Semiconductor Physics III, Springer Ser. Solid-State Sci., Vol. 101 (Springer, Berlin, Heidelberg 1992) p. 386

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, P., Polignone, L., Becker, C.R. et al. Contactless measurement of the conductivity of II–VI epitaxial layers by means of the partially filled waveguide method. Appl. Phys. A 55, 279–288 (1992). https://doi.org/10.1007/BF00348398

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348398

PACS

Navigation