Skip to main content
Log in

Enzymic control of irreversible binding of metabolically activated benzo(a)pyrene in perfused rat liver by monooxygenase activity

  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Addition of [3H]-benzo(a)pyrene to the perfusion medium of isolated rat livers results in irreversible binding of radioactivity to DNA, RNA and protein. Binding to DNA accounted for about 0.1% of the total radioactivity which was bound in livers from animals treated with oil or saline and was increased by a factor of 3–5 after pretreatment of the animals with β-naphthoflavone or with phenobarbital. When the inhibitiors of monooygenase activity, α-naphthoflavone or metyrapone, were present in the perfusion medium, irreversible binding was reduced in livers from both β-naphthoflavone- and phenobarbital-pretreated animals, irrespective of the inhibitor used.

In livers from animals treated with oil or saline protein and a RNA fraction containing tightly associated protein were able to bind [3H]-benzo(a)pyrene metabolites to about the same extent but after induction by pretreatment with β-naphthoflavone binding to the RNA fraction was enhanced to a much higher extent than binding to the protein fraction. Pretreatment with phenobarbital did not result in an increased irreversible binding to RNA and protein.

A considerable amount of 15–25% of the total radioactivity added to the perfusion medium was excreted into the bile after treatment of the animals with the tested inducers of monooxygenase activity compared to an excretion of 3% in animals treated with oil or saline.

The results indicate that nucleic acid and protein adduct formation in the liver is controlled by the action of the cytochrome P-450-dependent monooxygenases.

Zusammenfassung

Nach Zugabe von [3H]-Benzo(a)pyren zum Perfusionsmedium der isolierten Rattenleber wird eine irreversible Bindung von Radioaktivität an DNA, RNA und Protein beobachtet. Die Bindung an DNA betrug in Lebern von öl- bzw. kochsalzbehandelten Tieren etwa 0,1% der gesamten gebundenen Radioaktivität

Nach Vorbehandlung der Tiere mit β-Naphthoflavon oder Phenobarbital stieg die Bindung an DNA um den Faktor 3–5 an. In Gegenwart von α-Naphthoflavon oder Metyrapon als Inhibitoren der Monooxygenase wurde die irreversible Bindung sowohl nach β-Naphthoflavon als auch nach Phenobarbitalvorbehandlung geringer.

In Lebern von öl- bzw. kochsalzbehandelten Tieren wurde etwa gleich viel [3H]-Benzpyren pro mg an Protein und an die RNA-Fraktion, die noch fest assoziiertes Protein enthielt, gebunden. Nach Vorbehandlung mit dem Induktor β-Naphthoflavon wurde die Bindung an die RNA-Fraktion in erheblich größerem Ausmaß gesteigert als diejenige an die Proteinfraktion, während nach Vorbehandlung mit Phenobarbital die Bindung an RNA und Protein nicht anstieg.

Gegenüber einer Ausscheidung in die Galle von 3% der gesamten ins Perfusionsmedium eingesetzten Radioaktivität bei Lebern von öl- bzw. kochsalzbehandelten Tieren stieg die biliäre Elimination nach Vorbehandlung mit den untersuchten Induktoren der Monooxygenase auf 15–25% der eingesetzten Benzpyrenmenge an.

Die Ergebnisse sprechen dafür, daß die Bildung von Nucleinsäure- und Proteinaddukten in der Leber durch die Aktivität der Cytochrom P-450-abhängigen Monooxygenasen kontrolliert wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benedict, W. F., Considine, N., Nebert, D. W.: Genetic differences in aryl hydrocarbon hydroxylase induction and benzo(a)pyrene-produced tumorigenesis in the mouse. Molec. Pharmacol. 9, 266–277 (1973)

    Google Scholar 

  • Bock, K. W., Clausbruch, U. C. von, Josting, D., Ottenwälder, H.: Separation and partial purification of two differentially inducible UDP-glucuronyl transferases from rat liver. Biochem. Pharmacol. 26, 1097–1100 (1977)

    Google Scholar 

  • Boyland, E.: Biological significance of metabolism of polycyclic compounds. Symp. Biochem. Soc. 5, 40–54 (1950)

    Google Scholar 

  • Brookes, P., Lawley, P. D.: Evidence for the binding of polynuclear aromatic hydrocarbons to the nucleic acids of mouse skin: relation between carcinogenic power of hydrocarbons and their binding to deoxyribonucleic acid. Nature (Lond.) 202, 781–784 (1964)

    Google Scholar 

  • Burton, K.: Determination of DNA concentration with diphenylamine. In: Methods in enzymology (L. Grossman, K. Moldare, eds.), Vol. XII, Part B, pp. 163–166. New York-London: Academic Press 1968

    Google Scholar 

  • Diamond, L., Defendi, V., Brookes, P.: The interaction of 7,12-dimethylbenz(a)anthracene with cells sensitive and resistant to toxicity induced by this carcinogen. Cancer Res. 27, 890–897 (1967)

    Google Scholar 

  • Duncan, M., Brookes, P.: The relation of metabolism to macromolecular binding of the carcinogen benzo(a)pyrene by mouse embryo cells in culture. Int. J. Cancer 26, 496–505 (1970)

    Google Scholar 

  • Gelboin, H. V.: A microsome-dependent binding of benzo(a)pyrene to DNA. Cancer Res. 29, 1272–1276 (1969)

    Google Scholar 

  • Gelboin, H. V., Huberman, E., Sachs, L.: Enzymatic hydroxylation of benzopyrene and its relation to cytotoxicity. Proc. nat. Acad. Sci. (Wash.) 64, 1188–1194 (1969)

    Google Scholar 

  • Gielen, J., Goujon, F. M., Nebert, D. W.: Genetic regulation of aryl hydrocarbon hydroxylase induction. II. Simple Mendelian expression in mouse tissues in vivo. J. biol. Chem. 247, 1125–1137 (1972)

    Google Scholar 

  • Goujon, F. M., Nebert, D. W., Gielen, J.: Genetic expression of aryl hydrocarbon hydroxylase induction. IV. Interaction of various compounds with different forms of cytochrome P-450 and the effect on benzo(a)pyrene metabolism in vitro. Molec. Pharmacol. 8, 667–680 (1972)

    Google Scholar 

  • Grover, P. L., Sims, P.: Enzyme catalysed reactions of polycyclic hydrocarbons with DNA and protein in vitro. Biochem. J. 110, 159–160 (1968)

    Google Scholar 

  • Grover, P. L., Hewer, A., Sims, P.: Epoxides as microsomal metabolites of polycyclic hydrocarbons. FEBS Lett. 18, 76–80 (1971)

    Google Scholar 

  • Hems, R., Ross, B. D., Berry, M. N., Krebs, H. A.: Gluconeogenesis in perfused rat liver. Biochem. J. 101, 284–292 (1966)

    Google Scholar 

  • Holder, G. M., Yagi, H., Jerina, D. M., Levin, W., Lu, A. H. Y., Conney, A. H.: Metabolism of benzo(a)pyrene. Effect of substrate concentration and 3-methylcholanthrene pretreatment on hepatic metabolism by microsomes from rats and mice. Arch. Biochem. Biophys. 170, 557–566 (1975)

    Google Scholar 

  • Huberman, E., Sachs, L., Yang, S. K., Gelboin, H. V.: Identification of mutagenic metabolites of benzo(a)pyrene in mammalian cells. Proc. nat. Acad. Sci. (Wash.) 73, 607–611 (1976)

    Google Scholar 

  • Jernström, B., Vadi, H., Orrenius, S.: Formation in isolated rat liver microsomes and nuclei of benzo(a)pyrene metabolites that bind to DNA. Cancer Res. 36, 4107–4113 (1976)

    Google Scholar 

  • Kirby, K. S., Cook, E. A.: Isolation of deoxyribonucleic acid from mammalian tissues. Biochem. J. 104, 254–257 (1967)

    Google Scholar 

  • Kuroki, T., Heidelberger, C.: The binding of polycyclic aromatic hydrocarbons to the DNA, RNA, and proteins of transformable cells in culture. Cancer Res. 31, 2168–2176 (1971)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Marquardt, H., Heidelberger, C.: Influence of “feeder cells” and inducers and inhibitors of microsomal mixed-function oxidases on hydrocarbon-induced malignant transformation of cells derived from C3H mouse prostate. Cancer Res. 32, 721–725 (1972)

    Google Scholar 

  • Marquardt, H., Grover, P. L., Sims, P.: In vitro malignant transformation of mouse fibroblasts by non-K-region dihydrodiols derived from 7-methylbenz(a)anthracene, 7,12-dimethylbenz(a)anthracene, and benzo(a)pyrene. Cancer Res. 36, 2059–2064 (1976)

    Google Scholar 

  • Miller, L. L., Bly, C. G., Watson, M. L., Bale, W. F.: The dominant role of the liver in plasma protein synthesis. A direct study of the isolated perfused rat liver with the aid of lysine-ɛ-C14. J. exp. Med. 94, 431–453 (1951)

    Google Scholar 

  • Oesch, F.: Mammalian epoxide hydrases: Inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3, 305–340 (1973)

    Google Scholar 

  • Omura, T., Sato, R.: The carbon monoxide binding pigment of liver microsomes. II. Solubilization, purification and properties. J. biol. Chem. 239, 2379–2385 (1964)

    Google Scholar 

  • Osborne, M. R., Thompson, M. H., Tarmy, E. M., Beland, F. A., Harvey, R. G., Brookes, P.: The reaction of 7,8-dihydroxybenzo(a)pyrene-9,10-oxide with DNA in relation to the benzo(a)pyrene-DNA products isolated from cells. Chem.-biol. Interact. 13, 343–348 (1976)

    Google Scholar 

  • Pezzuto, J. M., Lea, M. A., Yang, C. S.: Binding of metabolically activated benzo(a)pyrene to nuclear macromolecules. Cancer Res. 36, 3647–3653 (1976)

    Google Scholar 

  • Pitot, H. C., Heidelberger, C.: Metabolic regulatory circuits and carcinogenesis. Cancer Res. 23, 1694–1700 (1963)

    Google Scholar 

  • Raw, I., Mahler, H. R.: Studies of electron transport enzymes. III. Cytochrome b5 of pig liver mitochondria. J. biol. Chem. 234, 1867–1873 (1959)

    Google Scholar 

  • Schneider, W. C.: Determination of nucleic acids in tissues by pentose analysis. In: Methods in enzymology (S. P. Colowick, N. O. Kaplan, eds.), Vol. III, pp. 680–684. New York-London: Academic Press 1957

    Google Scholar 

  • Sims, P., Grover, P. L., Swaisland, A., Pal, K., Hewer, A.: Metabolic activation of benzo(a)pyrene proceeds by a diol epoxide. Nature (Lond.) 252, 326–328 (1974)

    Google Scholar 

  • Thomson, R. Y., Heagy, F. C., Hutchison, W. C., Davidson, J. N.: The deoxyribonucleic acid content of the rat cell nucleus and its use in expressing the results of tissue analysis, with particular reference to composition of liver tissue. Biochem. J. 53, 460–474 (1953)

    Google Scholar 

  • Wattenberg, L. W.: Dietary modification of intestinal and pulmonary aryl hydrocarbon hydroxylase activity. Toxicol. appl. Pharmacol. 23, 741–748 (1972)

    Google Scholar 

  • Wiebel, F. J., Leutz, J. C., Diamond, L., Gelboin, H. V.: Aryl hydrocarbon (benzo(a)pyrene) hydroxylase in microsomes from rat tissues: Differential inhibition and stimulation by benzoflavones and organic solvents. Arch. Biochem. Biophys. 144, 78–86 (1971)

    Google Scholar 

  • Wood, A. W., Levin, W., Lu, A. Y. H., Yagi, H., Hernandez, O., Jerina, D. M., Conney, A. H.: Metabolism of benzo(a)pyrene and benzo(a)pyrene derivatives to mutagenic products by highly purified hepatic microsomal enzymes. J. biol. Chem. 251, 4882–4890 (1976)

    Google Scholar 

  • Yang, S. K., Selkirk, J. K., Plotkin, E. V., Gelboin, H. V.: Kinetic analysis of the metabolism of benzo(a)pyrene to phenols, dihydrodiols, and quinones by high-pressure chromatography compared to analysis by aryl hydrocarbon hydroxylase assay, and the effect of enzyme induction. Cancer Res. 35, 3642–3650 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In part subject of the doctoral thesis of Erik Klaus, Fachbereich Biologie, University of Mainz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahl, G.F., Klaus, E., Jonen, H.G. et al. Enzymic control of irreversible binding of metabolically activated benzo(a)pyrene in perfused rat liver by monooxygenase activity. Arch. Toxicol. 39, 149–158 (1977). https://doi.org/10.1007/BF00343282

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00343282

Key words

Navigation