Skip to main content
Log in

Untersuchungen über die Temperaturregulation australischer Fledermäuse (Microchiroptera)

Temperature Regulation in Australian Bats (Microchiroptera)

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

  1. 1.

    Temperature regulation in a representative cross section of 15 species of Australian bats (Fam. Emballonuridae, Megadermatidae, Rhinolophidae, Hipposideridae, Vespertilionidae, Molossidae) was investigated during a south to north crossing of the continent. Among these are included the two endemic genera Rhinonicteris and Macroderma. They all together form a representative section of the Australian bat fauna.

  2. 2.

    The difference between the body temperature during the daily sleep period and the daily activity period shows the degree of temperature control in these bats. Except for Taphozous georgianus and Macroderma gigas all species studied had body temperatures which were close to the environmental temperatures during the resting phase. This was especially marked in bats from the family Vespertilionidae, Rhinolophidae and Molossidae. In the tropical species there is little lowering of body temperature during sleep in the normal environment of the warm caves. In these bats extended exposure to cold leads to uncontrolled hypothermia and exhaustion.

  3. 3.

    A capability for rewarming is necessary for an efficient awakening out of the deep daily lethargy. Bats with such a capability are said to be heterothermic. Eleven of the species studied are of this type. The rewarming speed (thermogenesis) is greater in Vepertilionid-, Rhinolopid-and Molossid-bats and is equal to that of many European species from the same families. In contrast the rewarming is very slow in the tropical Taphozous australis and Rhinonicteris aurantiuts. This conforms with tropical species from Africa and India.

  4. 4.

    In a temperature regulated room at Monash (9–10° C, 95% rel. hum.) we studied the ability of the tropical Myotis adversus from Cairns to hibernate. After an acclimatization period of a fortnight these bats stayed in deep hibernation for three weeks. They were able to rewarm themselves either spontanously or after mechanical stimulation. During hibernation they showed the same respiratory pattern as hibernating European species and lost about 14–20 mg of weight daily.

  5. 5.

    It is most unlikely that they would have to tolerate similar environmental conditions at any time in their natural habitat near Cairns. From this and similar experiments with Rhinolophus and Tandaria we suggest that there has been a very early evolutionary development of heterothermy long before the various species immigrated into the different continents. It was the most important prerequisite for the evoulution of natural hibernation in the cool temperate Zone.

Zusammenfassung

  1. 1.

    Die Temperaturregulation eines repräsentativen Querschnittes von 15 australischen Fledermausarten (Fam.: Emballonuridae, Megadermatidae, Rhinolophidae, Hipposideridae, Vespertilionidae, Molossidae) wurde bei einer S-N-Durchquerung des Kontinentes untersucht. Darunter befanden sich auch die beiden endemischen Formen Rhinonicteris aurantius und Macroderma gigas.

  2. 2.

    Ruhe-und Wachtemperaturen zeigten den Grad der Temperaturkontrolle. Mit Ausnahme der beiden Arten Taphozous georgianus und Macroderma gigas sinkt bei allen die Körpertemperatur während der Ruhephase und nähert sich der Umgebungstemperatur. In besonderem Maße trifft dies für die Fledermäuse aus den Familien Vespertilionidae, Rhinolophidae und Molossidae zu. Bei den rein tropischen Arten ist die Temperatursenkung den wärmeren Tagesquartieren entsprechend geringer. Erzwungene Abkühlung führt bei ihnen rasch zur Erschöpfung und Unterkühlung.

  3. 3.

    Eine intensive Thermogenese sichert das Wiedererwachen aus der Tagesschlaflethargie. Mindestens 11 der untersuchten Arten sind danach zu den Heterothermen zu zählen. Die Geschwindigkeit des Temperaturanstieges ist bei den Vespertilioniden, Rhinolophiden und Molossiden am größten; sie entspricht derjenigen von europäischen Arten (der gleichen Familien). Nur langsam gelingt die Wiedererwärmung (in Übereinstimmung mit früheren Untersuchungen an tropischen Fledermäusen aus Afrika und Indien) dagegen den tropischen Arten Taphozous australis und Rhinonicteris aurantius.

  4. 4.

    In einem klimaregulierten Raum (9–10° Umgebungstemperatur, 95 % relative Luftfeuchtigkeit) wurde bei der Art Myotis adversus aus dem tropischen Cairns die Möglichkeit eines „Winterschlafes“ geprüft. Nach 14tägiger Akklimatisation blieben diese Fledermäuse bis zu 3 Wochen in Kältelethargie; sie zeigten dabei das gleiche Atmungsmuster und den gleich niederen Stoffwechsel wie winterschlafende europäische Arten. Sie konnten spontan oder nach Weckreizen erwachen.

  5. 5.

    In den drei Familien Vespertilionidae, Rhinolophidae und Molossidae muß die Fähigkeit zur Heterothermie schon sehr frühzeitig und noch vor der Einwanderung in die verschiedenen Kontinente entstanden sein. Sie war die Voraussetzung für die Entwicklung des natürlichen Winterschlafes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

N.S.W.:

New South Wales

Vic.:

Victoria

Qld.:

Queensland

N.T.:

Northern Territory

Literatur

  • Bartholomew, G. A., Leitner, P., Nelson, J. E.: Body temperature, oxygen consumption, and heart rate in three species of Australian flying foxes. Physiol. Zool. 37, 179–198 (1964).

    Google Scholar 

  • Brosset, A.: L'hibernation chez les chiroptères tropicaux. Mammalia 25, 413–452 (1961).

    Google Scholar 

  • —: The bats of central and western India. J. Bombay nat. hist. Soc. 59, I, 1–57 (1962); 59, II, 583–624 (1962); 59, III, 707–746 (1962).

    Google Scholar 

  • Bureau of Metereology: The climate and metereology of Australia. Bull. No 1 (1967).

  • Cade, T. J.: The evolution of torpidity in rodents. Mamm. Hibernation II, Ann. Acad. Sci. fenn. Ser. A, IV, Biol. 71, 79–112 (1964).

    Google Scholar 

  • Dwyer, P. D.: Bat banding. Aust. Nat. Hist. 14, 198–200 (1963).

    Google Scholar 

  • —. Aust. J. Zool. 12, 52–69 (1964).

    Google Scholar 

  • —: Observation on the Eastern Horse-Shoe Bat in North-Eastern New-South Wales. Helictite, J. Aust. Cave Res. 4, 73–82 (1966).

    Google Scholar 

  • —, Hamilton-Smith, E.: Breeding caves and maternity colonies of the Bent-Winged Bat in South-Eastern Australia. Helictite 4, (1), 3–21 (1965).

    Google Scholar 

  • Eisentraut, M.: Der Winterschlaf der Fledermäuse mit besonderer Berücksichtigung der Wärmeregulation. Z. Morph. Ökol. Tiere 29, 307–327 (1934).

    Google Scholar 

  • —: Der Wärmehaushalt tropischer Chiropteren. Biol. Zbl. 60, 199–209 (1940).

    Google Scholar 

  • —: Körpertemperaturen bei tropischen Fledermäusen und Schuppentieren. Säugetierkdl. Mitt. 4, 64–67 (1956).

    Google Scholar 

  • —: Heat regulation in primitive mammals and in tropical species. Bull. Mus. Comp. Zool. Harv. 124, 31–43 (1960).

    Google Scholar 

  • George, G., Wakefield, N. A.: Victorian cave bats. Vict. Nat. 77, 294–302 (1961).

    Google Scholar 

  • Hamilton-Smith, E.: Australian cave bats. Guide to identification. C.S.I.R.O. Div. Wildlife Res. (1964).

  • —: Distribution of cavedwelling bats in Victoria. Vict. Nat. 82, 132–137 (1965).

    Google Scholar 

  • —: The geographical distribution of Australian cave-dwelling Chiroptera. Int. J. Speleol. 2, 91–104 (1966).

    Google Scholar 

  • Hanus, K.: Body temperatures and metabolism in bats at different environmental temperatures. Physiol. bohemoslov. 8, 250–259 (1959a).

    Google Scholar 

  • —: To the question of thermoregulation in bats. Acta Soc. Zool. Bohemoslov. 23, 307–327 (1959).

    Google Scholar 

  • Heldmaier, G.: Thermogenese der Mausohrfledermaus (Myotis myotis Borkh.) beim Erwachen aus dem Winterschlaf. Z. vergl. Physiol. 63, 59–84 (1969).

    Google Scholar 

  • Hock, R. J.: The metabolic rates and body temperatures of bats. Biol. Bull. 101, 289–299 (1951).

    Google Scholar 

  • Hudson, J. W.: Variations in the patterns of torpidity of small homeotherms. Mammalian Hibernation III, p. 30–46. New York: Oliver & Boyd Ltd. u. Amer. Elsevier 1967.

    Google Scholar 

  • Johansen, K.: Temperature regulation in the nine-banded armadillo (Dasypus novemcinctus mexicanus). Physiol. Zool. 34, 126–144 (1961).

    Google Scholar 

  • —: Response to heat and cold in lower mammals. Int. J. Bioclim. Biomet. 6, 3–28 (1962).

    Google Scholar 

  • Kulzer, E.: Die Regelung der Körpertemperatur beim indischen Riesenflughund. Nat. u. Mus. 93, 1–11 (1963a).

    Google Scholar 

  • —: Temperaturregulation bei Flughunden der Gattung Rousettus Gray. Z. vergl. Physiol. 46, 595–618 (1963b).

    Google Scholar 

  • —: Temperaturregulation bei Fledermäusen (Chiroptera) aus verschiedenen Klimazonen. Z. vergl. Physiol. 50, 1–34 (1965).

    Google Scholar 

  • Leitner, P., Nelson, J. E.: Body temperature, oxygen consumption and heart rate in the Australian false vampire bats, Macroderma gigas. Comp. Biochem. Physiol. 21, 65–74 (1967).

    Google Scholar 

  • McKean, J. L., Hall, L. S.: Distribution of the Largefooted Myotis, Myotis adversus in Australia. Vict. Nat. 82, 164–168 (1965).

    Google Scholar 

  • McNab, B. K.: The economics of temperature regulation in neotropical bats. Comp. Biochem. Physiol. 31, 227–268 (1969).

    Google Scholar 

  • Morrison, P. R.: Body temperatures in some Australian mammals. I. Chiroptera. Biol. Bull. 116, 484–497 (1959).

    Google Scholar 

  • Pohl, H.: Temperaturregulation und Tagesperiodik des Stoffwechsels bei Winterschläfern (Untersuchungen an Myotis myotis Borkh., Glis glis L. und Mesocricetus auratus Waterh). Z. vergl. Physiol. 45, 109–153 (1961).

    Google Scholar 

  • Saalfeld, E. v.: Untersuchungen über die Fledermausatmung. Z. vergl. Physiol. 26, 242–252 (1939).

    Google Scholar 

  • Seebeck, J. H., Hamilton-Smith, E.: Notes on a wintering colony of bats. Vict. Nat. 84, 348–351 (1967).

    Google Scholar 

  • Simpson, G. G.: Historical zoogeography of Australian mammals. Evolution 15, 431–446 (1961).

    Google Scholar 

  • Stones, R. C., Wiebers, J. E.: A review of temperature regulation in bats (Chiroptera). Am. Midl. Nat. 74, 155–167 (1965).

    Google Scholar 

  • Tate, G. H. H.: Mammals of Cape York Peninsula, notes on the occurrence of rain forest in Queensland. Results of the Archbold Exped. No 66. Bull. Amer. Mus. Nat. Hist. 98, 567–616 (1952).

    Google Scholar 

  • Twente, J. W., Twente, J. A.: An hypothesis concerning the evolution of heterothermy in bats. Mamm. Hibernation II, Ann. Acad. Sci. fenn. Ser. A, IV, Biol. 71, 435–442 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft und des Zoology Department der Monash University in Clayton (Vic.), Australien.

Für Hilfe und Beratung bei unserer Arbeit danken wir herzlich Herrn General-konsul Dr. F. O. Gaerte, Melbourne, Prof. Dr. J. Warren, Zool. Dept. Monash University, Mr. E. Hamilton-Smith, Mr. W. Horton, Mr. A. Spate, Mr. and Mrs. S. Stewart, Mr. W. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulzer, E., Nelson, J.E., McKean, J.L. et al. Untersuchungen über die Temperaturregulation australischer Fledermäuse (Microchiroptera). Z. vergl. Physiolgie 69, 426–451 (1970). https://doi.org/10.1007/BF00333769

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00333769

Navigation