Skip to main content
Log in

Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli

Effects on carbamoyl phosphate and pyrimidine biosynthesis and on uracil uptake

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In the course of experiments directed towards the isolation of mutants of Escherichia coli K12 with altered regulation of the synthesis of carbamoylphosphate synthetase, two types of mutations were found to affect the cumulative repression of this enzyme by arginine and uracil. Alteraction of the arginine pathway regulatory gene, argR, was shown to reduce the repressibility of the enzyme by both end products while mutations affecting uridine monophosphate pyrophosphorylase (upp) besides affecting uracil uptake preclude enzyme repression by uracil or cytosine in the biosynthesis of carbamoylphosphate and the pyrimidines. The upp mutations were located on the chromosome near the gua operon. Mutations previously designated as uraP are shown to belong to this class.

The relation that could exist between the loss of uridine monophosphate pyrophosphorylase and the impairment of uracil uptake is discussed.

A new method for isolating argR mutants in arginine-less strains is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Al, A., Ingraham, J. L.: Control of carbamylphosphate synthesis in Salmonella typhimurium. J. biol. Chem. 244,4033–4045 (1969).

    Google Scholar 

  • Adelberg, E. A., Mandel, M., Chein Ching Chen, G.: Optimal conditions for mutagenesis by N-methyl-N′-nitrosoguanidine in Escherichia coli K12. Biochem. biophys. Res. Commun. 18, 788–795 (1965).

    Google Scholar 

  • Ahmad, S. I., Pritchard, R. H.: A map of four genes specifying enzymes involved in catabolism of nucleosides and desoxynucleosides in Escherichia coli. Molec. gen. Genet. 104, 351–359 (1969).

    Google Scholar 

  • Beck, C. I., Ingraham, J. L.: Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism. Molec. gen. Genet. 111,303–316 (1971).

    Google Scholar 

  • Beckwith, J. R., Pardee, A. B., Austrian, R., Jacob, F.: Coordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. J. molec. Biol. 5, 618–634 (1962).

    Google Scholar 

  • Ben-Ishai, R., Lahav, M., Zamir, A.: Control of uracil synthesis in Escherichia coli. J. Bact. 87, 1436–1442 (1964).

    Google Scholar 

  • Brockman, R. W., Davis, J. M., Stutts, P.: Metabolism of uracil and 5-fluorouracil by drug-sensitive and by drug-resistant bacteria. Biochim. biophys. Acta (Amst.), 40, 22–32 (1960).

    Google Scholar 

  • Crawford, I., Kornberg, A., Simms, E. S.: Conversion of uracil and orotate to uridine 5′-phosphate by enzymes of Lactobacilli. J. biol. Chem. 226, 1093–1101 (1957).

    Google Scholar 

  • Gerhart, J. C., Pardee, A. B.: The enzymology of control by feedback inhibition. J. biol. Chem. 237, 891–896 (1962).

    Google Scholar 

  • Glansdorff, N.: Topography of cotransducible arginine mutations in Escherichia coli K12. Genetics 51, 167–179 (1965).

    Google Scholar 

  • Gorini, L., Gundersen, W., Burger, M.: Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26, 173–182 (1961).

    Google Scholar 

  • Grenson, M.: The utilization of exogeneous pyrimidine and the recycling of uridine-5′-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Europ. J. Biochem. 11, 249–260 (1969).

    Google Scholar 

  • Hochstadt-Ozer, J., Stadtman, E. R.: The regulation of purine utilization in Bacteria. III. The involvement of purine phosphoribosyltransferase in the uptake of adenine and other nucleic acid precursors by intact resting cells. J. biol. Chem. 246, 5312–5320 (1971).

    Google Scholar 

  • Jones, M. E., Spector, L., Lipman, F.: Carbamylphosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. chem. Soc. 77, 819–820 (1955).

    Google Scholar 

  • Maas, W.: Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26,183–191 (1961).

    Google Scholar 

  • Mayné, E., Glansdorff, N., Wiame, J. M.: La nature et le déterminant génétique de la résistance d'Escherichia coli K12 à la 6-azauracile. Arch. Intern. Physiol. Biochim. 71, 825–826 (1963).

    Google Scholar 

  • Mergeay, M.: Physiologie et génétique d'un branchement métabolique: la biosynthèse du carbamylphosphate chez Escherichia coli. Thèse de doctorat. Université Libre de Bruxelles (1969).

  • Neuhard, J., Ingraham, J.: Mutants of Salmonella typhimurium requiring cytidine for growth. J. Bact. 95, 2431–2433 (1968).

    Google Scholar 

  • Nijkamp, H. J. J., Haan, P. G. de: Genetic and biochemical, studies of the guanosine 5′-monophosphate pathway in Escherichia coli. Biochim. biophys. Acta (Amst.) 145, 31–40 (1967).

    Google Scholar 

  • O'Donovan, G. A., Gerhart, J. C.: Isolation and partial characterization of regulatory mutants of the pyrimidine pathway in Salmonella typhimurium. J. Bact. 109, 1085–1096 (1972).

    Google Scholar 

  • O'Donovan, G. A., Neuhard, J.: Pyrimidine metabolism in microorganisms. Bact. Rev. 34, 278–343 (1970).

    Google Scholar 

  • Piérard, A.: Control of the activity of Escherichia coli carbamylphosphate synthetase by antagonistic allosteric effectors. Science 154, 1572–1573 (1966).

    Google Scholar 

  • Piérard, A., Glansdorff, N., Mergeay, M., Wiame, J. M.: Control of the biosynthesis of carbamoylphosphate in Escherichia coli. J. molec. Biol. 14, 23–36 (1965).

    Google Scholar 

  • Piérard, A., Wiame, J. M.: Regulation and mutation affecting a glutamine-dependent formation of carbamylphosphate in Escherichia coli. Biochem. biophys. Res. Commun. 15, 76–81 (1964).

    Google Scholar 

  • Pritchard, R. H., Ahmad, S. I.: Fluorouracil and the isolation of mutants lacking uridine phosphorylase in Escherichia coli: Location of the gene. Molec. gen. Genet. 111, 84–88 (1971).

    Google Scholar 

  • Taylor, A. L.: Current linkage map of Escherichia coli. Bact. Rev. 34, 155 (1970).

    Google Scholar 

  • Taylor, A. L., Trotter, C. D.: Revised linkage map of Escherichia coli. Bact. Rev. 31, 332–353 (1967).

    Google Scholar 

  • Trotta, P. P., Burt, M. E., Haschemeyer, R. H., Meister, A.: Reversible dissociation of carbamoylphosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc. nat. Acad. Sci. (Wash.) 68, 2599–2603 (1971).

    Google Scholar 

  • Vogel, H. J.: Aspects of repression in the regulation of enzyme synthesis: pathway-wide control and enzyme-specific response. Cold Spr. Harb. Symp. quant. Biol. 26, 163–172 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Pritchard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piérard, A., Glansdorff, N. & Yashphe, J. Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli . Molec. gen. Genet. 118, 235–245 (1972). https://doi.org/10.1007/BF00333460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00333460

Keywords

Navigation