Skip to main content
Log in

Fine structure of the neurohemal sinus gland of the shore crab, Carcinus maenas, and immuno-electron-microscopic identification of neurosecretory endings according to their neuropeptide contents

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The sinus gland of the shore crab, Carcinus maenas, is a compact assembly of interdigitating neurosecretory axon endings abutting upon the thin basal lamina of a central hemolymph lacuna. Four types of axon endings are distinguishable by the size distribution, shape, electron density and core structure of their neurosecretory granules. One additional type of axon ending is characterized by electron-lucent vacuoles and vesicles. The axon profiles are surrounded by astrocyte-like glial cells. Various fixations followed by epoxy- or Lowicrylembedding were compared in order to optimize the preservation of the fine structure of the granule types and the antigenicity of their peptide hormone contents. By use of specific rabbit antisera, the crustacean hyperglycemic, molt-inhibiting, pigment-dispersing, and red-pigment-concentrating hormones were assigned to the four distinct granule types which showed no overlap of immunostaining. Epi-polarization microscopy and ultrathin section analysis of immunogold-stained Lowicrylembedded specimens revealed that immunoreactivity to Leu-enkephalin and proctolin is co-localized with moltinhibiting hormone immunoreactivity in the same type of granule. The size and core structure of the immunocytochemically identified granule types vary little with the different pretreatments but, in some cases, to a statistically significant extent. The present results are compared with those from earlier studies of sinus glands in different crustaceans. The methods of granule identification used in this study supplement the classical approach in granule typing; they are easier to perform and more reliable for the analysis of release phenomena in identified secretory neurons supplying the neurohemal sinus gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew RD, Orchard I, Saleuddin ASM (1978) Structural reevaluation of the neurosecretory system in the crayfish eyestalk. Cell Tissue Res 190:235–246

    Google Scholar 

  • Andrews PM, Copepland DE, Fingerman M (1971) Ultrastructural study of the neurosecretory granules in the sinus gland of the blue crab, Callinectes sapidus. Z Zellforsch 113:461–471

    Google Scholar 

  • Aoto T, Hisano S (1985) Ultrastructural evidence for the existence of the distal retinal pigment light-adapting hormone in the sinus gland of the prawn Palaemon paucidens. Gen Comp Endocrinol 60:468–474

    Google Scholar 

  • Aréchiga H, Chávez B, Glantz RM, (1985) Dye coupling and gap junctions between crustacean neurosecretory cells. Brain Res 326:183–187

    Google Scholar 

  • Aréchiga H, García U, Martínez-Millán L (1990) Synaptic regulation of neurosecretory cell activity in the crayfish eyestalk. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel Boston Berlin, pp 471–482

    Google Scholar 

  • Bliss DE (1951) Metabolic effects of sinus gland and eyestalk removal in the land crab Gecarcinus lateralis. Anat Rec 11:502–503

    Google Scholar 

  • Bliss DE, Welsh JH (1952) The neurosecretory system of brachyuran Crustacea. Biol Bull 103:157–169

    Google Scholar 

  • Bliss DE, Durand JP, Welsh JH (1954) Neurosecretory systems in decapod Crustacea. Z Zellforsch Mikrosk Anat 39:520–536

    Google Scholar 

  • Bressac C (1988) Les organes neurohémaux et les glandes endocrines de Pachygrapsus marmoratus (Fabricius) (Decapoda, Brachyura). I. Les organes neurohémaux: glande du sinus et organes péricardiaques. Crustaceana 55:71–87

    Google Scholar 

  • Brix K, Kukulies J, Stockem W (1987) Studies on microplasmodia of Physarum polycephalum. V. Correlation of surface morphology, microfilament organization and motile activity. Protoplasma 137:156–167

    Google Scholar 

  • Bunt AH (1969) Formation of coated and “synaptic” vesicles with-in neurosecretory axon terminals of the crustacean sinus gland. J Ultrastruct Res 28:411–421

    Google Scholar 

  • Carlemalm E, Garavito RM, Villiger W (1982) Resin development for electron microscopy and analysis of embedding at low temperature. J Microsc 126:123–143

    Google Scholar 

  • Chaigneau J (1983) Neurohemal organs in Crustacea. In: Gupta AP (ed) Neurohemal organs of arthropods. Thomas, Springfield, Illinois, pp 53–91

    Google Scholar 

  • Cooke IM, Haylett BA (1984) Ionic dependence of secretory and electrical activity evoked by elevated K+ in a peptidergic neurosecretory system. J Exp Biol 113:289–321

    Google Scholar 

  • Cooke IM, Sullivan RE (1982) Hormones and neurosecretion. In: Bliss DE, Mantel LH (eds) The biology of Crustacea, vol 2. Academic Press, New York, pp 205–290

    Google Scholar 

  • Cooke IM, Haylett BA, Weatherby TN (1977) Electrically elicited neurosecretory and electrical responses of the isolated crab sinus gland in normal and reduced calcium salines. J Exp Biol 70:125–149

    Google Scholar 

  • Cornelese-ten Velde I, Bonnet J, Tanke HJ, Ploem JS (1990) Reflection contrast microscopy performed on epi-illumination microscope stands: comparison of reflection contrast- and epi-polarization microscopy. J Microsc 159:1–13

    Google Scholar 

  • cuadras J, Marti-Subirana A (1987) Glial cells of the crayfish and their relationship with neurones. An ultrastructural study. J Physiol (Paris) 82:196–217

    Google Scholar 

  • Dircksen H (1990) Neurosecretory endings in the sinus gland of Carcinus maenas and their identification by neuropeptide-immunocytochemistry. In: Elsner N, Roth G (eds) Brain-perception-cognition, Thieme, Stuttgart, p 320

    Google Scholar 

  • Dircksen H, Keller R (1988) Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide, in the nervous system of the shore crab, Carcinus maenas L. Cell Tissue Res 254:347–360

    Google Scholar 

  • Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP (1987) The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: identification by an antiserum against synthetic PDH. Cell Tissue Res 250:377–387

    Google Scholar 

  • Dircksen H, Webster SG, Keller R (1988) Immunocytochemical demonstration of the neurosecretory systems containing putative moult-inhibiting and hyperglycemic hormone in the eyestalk of brachyuran crustaceans. Cell Tissue Res 251:3–12

    Google Scholar 

  • Durand JB (1956) Neurosecretory cell types and their secretory activity in the crayfish. Biol Bull 111:62–76

    Google Scholar 

  • Ellis IO, Bell J, Bancroft JD (1988) An investigation of optimal gold particle size for immunohistological immunogold and immunogold-silver staining to be viewed by polarized incident light (epi polarization) microscopy. J Histochem Cytochem 36:121–124

    Google Scholar 

  • Gabe M (1966) Neurosecretion. Pergamon Press, Oxford

    Google Scholar 

  • Gaus G, Kleinholz LH, Kegel G, Keller R (1990) Isolation and characterization of red-pigment-concentrating hormone (RPCH) from six crustacean species. J Comp Physiol [B] 160:373–379

    Google Scholar 

  • Gorgels-Kallen JL, Van Herp F (1981) Localization of crustacean hyperglycemic hormone (CHH) in the X-organ sinus gland complex in the eyestalk of the crayfish, Astacus leptodactylus (Nordmann, 1842). J Morphol 170:347–355

    Google Scholar 

  • Gu J, De Mey J, Moeremans M, Polak JM (1981) Sequential use of the PAP and immunogold staining methods for the light microscopical double staining of tissue antigens. Its application to the study of regulatory peptides in the gut. Regul Pept 1:365–374

    Google Scholar 

  • Hanke J, Jaros PP, Willig A (1991) Identification of Leu-enkephalin, CHH and MIH by immunogold electron microscopy and first ultrastructural autoradiographic evidence for an opioid receptor in the sinus gland of the shore crab, Carcinus maenas. Abstr 35th Symp Dtsche Ges Endokrinol, Bonn. Acta Endocrinol 124 [Suppl 1]:5

    Google Scholar 

  • Hanström B (1931) Neue Untersuchungen über Sinnesorgane und Nervensystem der Crustaceen. I. Z Morphol Ökol Tiere 23:8–236

    Google Scholar 

  • Hanström B (1933) Neue Untersuchungen über Sinnesorgane und Nervensystem der Crustaceen. II. Zool Jb Anat 56:387–520

    Google Scholar 

  • Hanström B (1937) Die Sinusdrüse und der hormonal bedingte Farbwechsel bei Crustaceen. Kungl Svensk Vetenskap Handl III 16:1–99

    Google Scholar 

  • Hanström B (1941) Einige Parallelen im Bau und in der Herkunft der inkretorischen Organe der Arthropoden und der Vertebraten. Lunds Univ Arsskr NF 37:3–19

    Google Scholar 

  • Hatton GI (1988) Pituicytes, glia and control of terminal secretion. J Exp Biol 139:67–79

    Google Scholar 

  • Heap PF, Jones CW, Morris JF, Pickering BT (1975) Movement of neurosecretory product through the anatomical compartments of the neural lobe of the pituitary gland. Cell Tissue Res 156:483–497

    Google Scholar 

  • Hisano S (1978) Synaptic junctions in the sinus gland of the freshwater prawn Palaemon paucidens. Cell Tissue Res 189:435–440

    Google Scholar 

  • Hodge M, Chapman G (1958) Some observations on the fine structure of the land crab, Gecarcinus lateralis. J Biophys Biochem Cytol 4:571–574

    Google Scholar 

  • Huberman A, Aguilar MB (1988) A neurosecretory hyperglycemic hormone from the sinus gland of the Mexican crayfish Procambarus bouvieri (Ortmann). II. Structural comparison of two isoforms of the hormone. Comp Biochem Physiol 91B:345–349

    Google Scholar 

  • Jaros PP (1978) Tracing of neurosecretory neurones in crayfish optic ganglia by cobalt iontophoresis. Cell Tissue Res 194:495–496

    Google Scholar 

  • Jaros PP (1990) Enkephalins, biologically active neuropeptides in invertebrates, with special reference to crustaceans. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel Boston Berlin, pp 471–482

    Google Scholar 

  • Jaros PP, Keller R (1979) Immunocytochemical identification of hyperglycemic hormone-producing cells in the eyestalk of Carcinus maenas. Cell Tissue Res 204:379–385

    Google Scholar 

  • Jaros PP, Dircksen H, Keller R (1985) Occurrence of immunoreactive enkephalins in a neurohemal organ and other nervous structures in the eyestalk of the shore crab, Carcinus maenas L. (Crustacea, Decapoda). Cell Tissue Res 241:111–117

    Google Scholar 

  • Kallen J, Meusy JJ (1989) Do the neurohormones VIH (vitellogenesis inhibiting hormone) and CHH (crustacean hyperglycemic hormone) of crustaceans have a common precursor? Immunolocalization of VIH and CHH in the X-organ sinus gland complex of the lobster, Homarus americanus. Invert Reprod Dev 16:43–52

    Google Scholar 

  • Kegel G, Reichwein B, Weese S, Gaus G, Kataliniĉ JP, Keller R (1989) Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS Lett 255:10–14

    Google Scholar 

  • Keller R (1983) Biochemistry and specificity of the neurohemal hormones in Crustacea. In: AT Gupta (ed) Neurohemal organs of arthropods. Thomas, Springfield, Illinois, pp 118–148

    Google Scholar 

  • Keller R, Beyer J (1968) Zur hyperglykämischen Wirkung von Serotonin and Augenstielextrakt beim Flußkrebs Orconectes limosus. Z Vergl Physiol 59:78–85

    Google Scholar 

  • Keller R, Kegel G (1984) Studies on crustacean eyestalk neuropeptides by use of high performance liquid chromatography. In: Hoffmann J, Porchet M (eds) Biosynthesis, metabolism and mode of action of invertebrate hormones. Springer, Berlin Heidelberg New York, pp 145–154

    Google Scholar 

  • Keller R, Jaros PP, Kegel G (1985) Crustacean hyperglycemic neuropeptides. Am Zool 25:207–221

    Google Scholar 

  • Krevszig E (1975) Statistische Methoden und ihre Anwendungen. Vandenhoeck & Ruprecht, Göttingen

    Google Scholar 

  • Lane NJ (1981) Invertebrate neuroglia-junctional structure and development. J Exp Biol 95:7–33

    Google Scholar 

  • Lüschen W, Buck F, Willig A, Jaros PP (1991) Isolation, sequence analysis, and physiological properties of enkephalins in the nervous tissue of the shore crab Carcinus maenas L. Proc Natl Acad Sci USA 88:8671–8675

    Google Scholar 

  • Maddrell SHP, Nordmann JJ (1979) Neurosecretion. Blackie, Glasgow London, pp 19–26

    Google Scholar 

  • Mancillas JR, McGinty JF, Selverston AI, Karten H, Bloom F (1981) Immunocytochemical localization of enkephalin and substance P in retina and eyestalk of lobster. Nature 293:576–578

    Google Scholar 

  • Mangerich S, Keller R, Dircksen H (1986) Immunocytochemical identification of structures containing putative red pigment-concentrating hormone in two species of decapod crustaceans. Cell Tissue Res 245:377–386

    Google Scholar 

  • Mangerich S, Keller R, Dircksen H, Rao KR, Riehm JP (1987) Localization of piment-dispersing hormone (PDH) and coexistence with FMRFamide immunoreactivity in the eyestalks of two decapod crustaceans. Cell Tissue Res 250:365–375

    Google Scholar 

  • May BA, Golding DW (1983) Aspects of secretory phenomena within the sinus gland of Carcinus maenas L. An ultrastructural study. Cell Tissue Res 228:245–254

    Google Scholar 

  • Meusy JJ (1968) Precisions nouvelles sur l'ultrastructure de la glande du sinus d'un crustacé décapode brachyoure, Carcinus maenas L. Bull Soc Zool Fr 93:291–299

    Google Scholar 

  • Meusy JJ, Payen GG (1988) Female reproduction in malacostracan Crustacea. Zool Sci 5:217–265

    Google Scholar 

  • Meusy JJ, Soyez D (1991) Immunological relationships between neuropeptides from the sinus gland of the lobster Homarus americanus, with special references to vitellogenesis-inhibiting hormone and crustacean hyperglycemic hormone. Gen Comp Endocrinol 81:410–418

    Google Scholar 

  • Meusy JJ, Martin G, Soyez D, Van Deijnen JE, Gallo JM (1987) Immunochemical and immunocytochemical studies of the crustacean vitellogenesis-inhibiting hormone (VIH). Gen Comp Endocrinol 67:333–341

    Google Scholar 

  • Newcomb RW, Stuenkel EL, Cooke IM (1985) Characterization, biosynthesis and release of neuropeptides from the X-organ sinus gland system of the crab Cardisoma carnifex. Am Zool 25:157–171

    Google Scholar 

  • Nordmann JJ (1977) Ultrastructural appearance of neurosecretory granules in the sinus gland of the crab after different fixation procedures. Cell Tissue Res 185:557–563

    Google Scholar 

  • Nordmann JJ, Labouesse J (1981) Neurosecretory granules: evidence for an aging process within the neurohypophysis. Science 211:595–597

    Google Scholar 

  • Nordmann JJ, Morris JF (1976) Membrane retrieval in neurosecretory axon endings. Nature 261:723–725

    Google Scholar 

  • Nordmann JJ, Morris JF (1980) Depletion of neurosecretory granules and membrane retrieval in the sinus gland of the crab. Cell Tissue Res 205:31–42

    Google Scholar 

  • Passano LM (1951) The X-organ sinus gland neurosecretory system in crabs. Anat Rec 11:502

    Google Scholar 

  • Pow DV, Morris JF (1991) Membrane routing during exocytosis and endocytosis in neuroendocrine neurones and endocrine cells: use of colloidal gold particles and immunocytochemical discrimination of membrane compartments. Cell Tissue Res 264:299–316

    Google Scholar 

  • Quackenbush LS, Fingerman M (1984) Regulation of the release of chromatophorotropic neurohormones from the isolated eyestalk of the fiddler crab, Uca pugilator. Biol Bull 166:237–250

    Google Scholar 

  • Rao KR, Riehm JP, Zahnow CA, Kleinholz LH, Tarr GE, Johnson L, Norton S, Landau M, Semmes OJ, Sattelberg RM, Jorenby WH, Hintz MF (1985) Characterization of a pigment-dispersing hormone in eyestalks of the fiddler crab Uca pugilator. Proc Natl Acad Sci USA 82:5319–5322

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenburg, München

    Google Scholar 

  • Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 26:1074–1081

    Google Scholar 

  • Rothe H, Lüschen W, Asken A, Willig A, Jaros PP (1991) Purified crustacean enkephalin inhibits release of hyperglycemic hormone in the crab Carcinus maenas L.. Comp Biochem Physiol 99C, 57–62

    Google Scholar 

  • Schooneveld H, Romberg-Privee HM, Veenstra JA (1986) Immunocytochemical differentiation between adipokinetic hormone (AKH)-like peptides in neurones and glandular cells in corpus cardiacum of Locusta migratoria and Periplaneta americana with C-terminal and N-terminal specific antisera to AKH. Cell Tissue Res 243:9–14

    Google Scholar 

  • Shivers RR (1967) Fine structure of crayfish optic ganglia. Univ Kansas Sci Bull 47:677–733

    Google Scholar 

  • Shivers RR (1976) Exocytosis of neurosecretory granules from the crustacean sinus gland in freeze-fracture. J Morphol 150:227–252

    Google Scholar 

  • Silverthorne SU (1975) Neurosecretion in the sinus gland of the fiddler crab Uca pugnax. Cell Tissue Res 165:129–133

    Google Scholar 

  • Sjögren S (1934) Die Blutdrüse und ihre Ausbildung bei den Decapoden. Zool Jb Anat 58:145–170

    Google Scholar 

  • Smith G (1974) The ultrastructure of the sinus gland of Carcinus maenas (Crustacea: Decapoda). Cell Tissue Res 155:117–125

    Google Scholar 

  • Smith G (1975) The neurosecretory cells of the optic lobe in Carcinus maenas L. Cell Tissue Res 156:403–409

    Google Scholar 

  • Smith G, Naylor E (1972) The neurosecretory system of the eye-stalk of Carcinus maenas (Crustacea: Decapoda). J Zool (Lond) 166:313–321

    Google Scholar 

  • Soyez D, Noel PY, Van Deijnen JE, Martin M, Morel A, Payen GG (1990) Neuropeptides from the sinus gland of the lobster Homarus americanus: characterization of hyperglycemic peptides. Gen Comp Endocrinol 79:261–274

    Google Scholar 

  • Soyez D, Le Caer JP, Noel PY, Rossier J (1991) Primary structure of two isoforms of the vitellogenesis inhibiting hormone from the lobster Homarus americanus. Neuropeptides 20:25–32

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  • Stangier J, Dircksen H, Keller R (1986) Identification and immunocytochemical localization of proctolin in the pericardial organs of the shore crab, Carcinus maenas. Peptides 7:67–72

    Google Scholar 

  • Strolenberg GECM, Van Herp F (1977) Mise en évidence du phénomène d'exocytose dans la glande du sinus d'Astacus leptodactylus (Nordmann) sous l'influence d'injections de sérotonine. C R Acad Sci [III] 284:57–59

    Google Scholar 

  • Stuenkel EL (1984) Simultaneous monitoring of electrical and secretory activity in peptidergic neurosecretory terminals of the crab. J Physiol (Lond) 359:163–187

    Google Scholar 

  • Stuenkel EL, Gillary E, Cooke IM (1991) Autoradiographic evidence that transport of newly synthesized neuropeptides is directed to release sites in the X-organ-sinus gland of Cardisoma carnifex. Cell Tissue Res 264:253–262

    Google Scholar 

  • Tensen CP, Janssen KPC, Van Herp F (1989) Isolation, characterization and physiological specificity of the crustacean hyperglycemic factors from the sinus gland of the lobster, Homarus americanus (Milne-Edwards). Invert Reprod Dev 16:155–164

    Google Scholar 

  • Van Herp F, Van Buggenum HJM (1979) Immunocytochemical localization of hyperglycemic hormone (HGH) in the neurosecretory system of the crayfish Astacus leptodactylus. Experientia 35:1527–1529

    Google Scholar 

  • Van Wormhoudt A, Van Herp F, Bellon-Humbert C, Keller R (1984) Changes and characteristics of the crustacean hyperglycemic hormone (CHH material) in Palaemon serratus Pennant (Crustacea, Decapoda, Natantia) during the different steps of the purification. Comp Biochem Physiol 79B:353–360

    Google Scholar 

  • Weatherby TM (1981) Ultrastructural study of the sinus gland of the crab, Cardisoma carnifex. Cell Tissue Res 220:293–312

    Google Scholar 

  • Webster SG (1991) Amino acid sequence of putative moult-inhibiting hormone (MIH) from the crab Carcinus maenas. Proc R Soc Lond [B] 244:247–252

    Google Scholar 

  • Webster SG, Keller R (1986) Purification, characterization and amino acid composition of the putative moult-inhibiting hormone (MIH) of Carcinus maenas (Crustacea, Decapoda). J Comp Physiol 156:617–624

    Google Scholar 

  • Webster SG, Keller R (1987) Physiology and biochemistry of crustacean neurohormonal peptides. In: Thorndyke M, Goldsworthy GJ (eds) Peptides and amines in invertebrates. Cambridge University Press, Cambridge, pp 173–196

    Google Scholar 

  • Weidemann W, Gromoll J, Keller R (1989) Cloning and sequence analysis of cDNA for precursor of a crustacean hyperglycemic hormone. FEBS Lett 257:31–34

    Google Scholar 

  • Weitzmann M (1969) Ultrastructural study of the release of neurosecretory material from the sinus gland of the land crab, Gecarcinus lateralis. Z Zellforsch 94:147–154

    Google Scholar 

  • Zimmermann H (1990) Neurotransmitter release. FEBS Lett 268:394–399

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dircksen, H. Fine structure of the neurohemal sinus gland of the shore crab, Carcinus maenas, and immuno-electron-microscopic identification of neurosecretory endings according to their neuropeptide contents. Cell Tissue Res 269, 249–266 (1992). https://doi.org/10.1007/BF00319616

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319616

Key words

Navigation