Skip to main content
Log in

Cookeite LiAl4(Si3Al)O10(OH)8: Experimental study and thermodynamical analysis of its compatibility relations in the Li2O−Al2O3−SiO2−H2O system

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Three reactions limiting the stability field of the di-trioctahedral chlorite cookeite in the presence of quartz, in the system Li2O−Al2O3−SiO2−H2O (LASH) have been reversed in the range 290–480°C, 0.8–14 kbar, using natural material close to the end member composition. Combining our results with known and estimated thermodynamic properties of the other minerals belonging to the LASH system, the enthalpy (-8512200 J/mol) and the entropy (504.8 J/mol*K) of cookeite are calculated by a feasible solution space approach. The knowledge of these values allowed us to draw the first P−T phase diagram involving both the hydrated Li-aluminosilicates cookeite and bikitaite, which is applicable to a large variety of natural rock systems. The low thermal extent of the stability field of cookeite+quartz (260–480°C) makes cookeite a valuable indicator of low temperature conditions within a wide range of pressure (1–14 kbar).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey SN, Lister JS (1989) Structures, compositions, and X-ray diffraction identification of dioctahedral chlorites. Clays Clay Miner 37: 193–202

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O−K2O−CaO−MgO−FeO −Fe2O3−Al2O3−SiO2−TiO2−H2O−CO2. J Petr 29: part 2, 445–522

    Google Scholar 

  • Berman RG, Brown TH (1985) The heat capacity of minerals in the system K2O−Na2O−CaO−MgO−FeO−Fe2O3−Al2O3 −SiO2−TiO2−H2O−CO2: representation, estimation, and high temperature extrapolation. Contr Miner Petrol 89: 168–183

    Article  Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase equilibrium measurements at pressure up to 50 kb, and temperatures up to 1750°C. J Geophys Res 65: 741–748

    Google Scholar 

  • Brammal A, Leech JGC, Bannister FA (1937) The paragenesis of cookeite and hydromuscovite associated with gold at Ogofan, Carmathenshire. Mineral Mag 24: 507

    Google Scholar 

  • Brown TH, Berman RG, Perkins EH (1988) GEO-CALC: software for calculation and display of pressure-temperature-composition phase diagrams using an IBM or compatible personal computer. Comput Geosci 14: 279–289

    Google Scholar 

  • Černý P (1970) Compositional variation in cookeite. Can Mineral 10: part 4, 636–647

    Google Scholar 

  • Černý P, London D (1983) Crystal chemistry and stability of petalite. Tscherma Mineral Petrol Mitt 31: 81–96

    Google Scholar 

  • Deshpande ML (1978) Lithium ressources in India. Ind Miner 32: 41–47

    Google Scholar 

  • Fischer W, Gibergy P, Glastre P (1989) Découverte de cookeite [(LiAl4)(AlSi3)O10(OH8)] dans un filon à carbonates et sulfures du Dôme de la Mure (Isère, France). Geol Alp, Grenoble 65: 39–44

    Google Scholar 

  • Flehmig PD, Menschel G (1972) Über die Lithiumgehalte und das Auftreten von cookeit (lithiumchlorit) in permischen Sandsteinen von Nordhessen. Contrib Mineral Petrol 34: 211–223

    Article  Google Scholar 

  • Göd R (1989) The spodumene deposit at “Weinebene”, Koralpe, Austria. Mineral Deposita 24: 270–278

    Article  Google Scholar 

  • Goffé B (1977) Presence de cookéite dans les bauxites métamorphiques du Dogger de la Vanoise (Savoie). Bull Soc Fr Minéral Cristallogr 100: 254–257

    Google Scholar 

  • Goffé B (1979) La lawsonite et les associations à pyrophyllite-calcite dans les sédiments alumineux du Brianconnais. Premières occurrences. CR Acad Sci sér D, 289: 813–816

    Google Scholar 

  • Goffé B (1980) Magnésiocarpholite, cookéite et euclase dans les niveaux continentaux métamorphiques de la zone Brianconnaise. Données métamorphiques et nouvelles occurrences. Bull Soc Fr Minéral Cristallogr 103: 297–302

    Google Scholar 

  • Goffé B (1982) Definition du faciès Fe−Mg carpholite-chloritoïde, un marqueur du métamorphisme de HP-BT dans les métasédiments alumineux. Thèse Doct Sci Paris

  • Goffé B (1984) Le faciès à carpholite-chloritoïde dans la couverture briançonnaise des Alpes Ligures: un témoin de l'histoire tectono-métamorphique régionale. Mém Soc Géol Ital 28: 461–479

    Google Scholar 

  • Goffé B (1984) Le faciés à carpholite-chloritoïde dans la couverture briançonnaise des Alpes Ligures: un témoin de l'histoire tectono-métamorphique régionale. Mém Soc Géol Ital 28: 461–479

    Google Scholar 

  • Goffé B, Murphy WM, Lagache M (1987) Experimental transport of Si, Al and Mg in hydrothermal solutions: an application to vein mineralization during high-temperature, low pressure metamorphism in French Alps. Contrib Mineral Petrol 97: 438–450

    Article  Google Scholar 

  • Gouedard V, Goffé B (1984) Synthèse de la cookéite, minéral lithinifère des milieux diagénétiques, hydrothermaux et métamorphiques de bas degré. 10è RAST, Bordeaux, Soc Géol France 266

  • Gordon TM (1973) Determination of internally consistent thermodynamic data from phase equilibrium experiments. J Petrol 81: 199–208

    Google Scholar 

  • Gordon TM (1977) Derivation of internally consistent thermodynamic data from phase equilibrium experiments using linear programming. In: Greenwood HJ (ed), Short course in application of thermodynamic to petrology and ore deposits. Mineral Assoc Canada Short course 2, 185–198

  • Govindaraju K (1984) Compilation of working values and sample description for 170 international reference samples of mainly silicate rocks and minerals. Geostand, News 7: 3–16

    Google Scholar 

  • Haar C, Gallagher JS, Kell GS (1984) NBS/NRC Steam Tables. Thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Washington Hemisphere publishing Co, Washington USA

    Google Scholar 

  • Heinrich EW (1975) Economic geology and mineralogy of petalite and spodumene pegmatites. Indian J Earth Sci 2: 18–29

    Google Scholar 

  • Hemingway BS, Robie RA, Kittrick JA, Grew ES, Nelen JA, London D (1984) The heat capacities of osumilite from 298.15 to 1000 K, the thermodynamic properties of two natural chlorites to 500 K and the thermodynamic properties of petalite to 1800 K. Am Mineral 69: 642–700

    Google Scholar 

  • Hensen BJ (1967) Mineralogy and petrography of some tin, lithium and beryllium bearing albite-pegmatites near Doade, Galicia Spain. Leidse Geol Mededel 39: 249–259

    Google Scholar 

  • Herman P, Vanderstappen R, Hubaux A (1961) Contribution à l'étude des minéraux congolais. Ann Soc Géol Belg 84: 297–305

    Google Scholar 

  • Holland TJB (1989) Dependance of entropy on volume for silicates and oxydes minerals, a review and a predictive model. Am Mineral 74: 5–13

    Google Scholar 

  • Holland TJB, Powell R (1985) An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. J Metam Geol 3: 343–370

    Google Scholar 

  • Hurlburt CS (1958) Additional data on bikitaite. Am Mineral 43: 768–770

    Google Scholar 

  • Lacroix A (1915) Manandonite et cookéite. Bull Soc Fr Minéral Cristallogr 38: 142–149

    Google Scholar 

  • Lacroix A (1922) Minéralogie de Madagascar. Challamel A, Paris

    Google Scholar 

  • London D (1981) Preliminary experimental results in the system LiAlSiO4−SiO2−H2O. Yearb Carnegie Inst Washington 80: 341–345

    Google Scholar 

  • London D (1984) Experimental phase equilibria in the system LiAlSiO4−SiO2−H2O: A petrogenetic grid for Lithium rich pegmatites. Am Mineral 69: 995–1004

    Google Scholar 

  • London D, Burt DM (1982a) Lithium minerals in pegmatites. Mineral Assoc Canada Short Course 8: 99–133

    Google Scholar 

  • London D, Burt DM (1982b) Lithium aluminosilicates occurrences in pegmatites and the lithium aluminosilicates phase diagram. Am Mineral 67: 483–493

    Google Scholar 

  • Loughnan FC, Steggles KR (1976) Cookeite and diaspore in the Back Creek pyrophyllite deposit near Pambula, New South Wales. Mineral Mag 40: 765–772

    Google Scholar 

  • Massonne HJ (1989) The upper thermal stability of chlorite+quartz: an experimental study in the system MgO−Al2O3 −SiO2−H2O. J Metamorph Geol 7: 567–581

    Google Scholar 

  • Massonne HJ, Schreyer W (1986) High-pressure syntheses and X-ray properties of white micas in the system K2O−MgO −Al2O3−SiO2−H2O. Neues Jahrb Mineral Abhandl 153: 177–215

    Google Scholar 

  • Mirwald PW, Getting IC, Kennedy GC (1975) Low friction cell for piston cylinder high-pressure apparatus. J Geophys Res 80: 1519–1525

    Google Scholar 

  • Miser HD, Milton C (1964) Quartz, rectorite and cookeite from the Jeffrey Quarry, near North Little Rock, Pulaski County, Arkansas. Arkansas Geol Comm Bull 21: 29

    Google Scholar 

  • Orliac M, Permingeat F, Tollon F, Passaqui B (1971) Cookéite les filons de quartz des Pyrénées centrales (Ariège et Haute Garonne). Bull Soc Fr Minéral Cristallogr 94: 396–401

    Google Scholar 

  • Pecora WT, Switzer G, Barbosa AL, Myers AT (1950) Mineralogy of the Golconda pegmatite, Minas Gerais, Brazil. Am Mineral 35: 889–901

    Google Scholar 

  • Penfield SL (1894) On cookeite from Paris and Hebron, Maine. Bull Soc Fr Mineral Cristallogr 17: 223–224

    Google Scholar 

  • Powell R, Holland TJB (1985) An internally consistent thermodynamic dataset with incertainties and correlation: 1. Methods and a worked example. J Metamorph Geol 3: 327–342

    Google Scholar 

  • Quensel P (1937) Minerals of the Varutrask pegmatite. VI. On the occurrence of cookeite. Geol Foren Forhandl 59: 262–268

    Google Scholar 

  • Ren SK, Eggleton RA, Walshe JL (1988) The formation of hydrothermal cookeite in the breccia pipes of the Ardlethan tin field, New South Wales, Australia. Can Mineral 26: 407–412

    Google Scholar 

  • Rijks HRP, Van Der Veen AH (1972) The geology of tin bearing pegmatites of the eastern part of Kamitivi district, Rhodesia. Mineral Deposita 7: 383–395

    Article  Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressures and at higher temperatures. US Geol Surv Bull 1452

  • Sartori (1988) L'unité du Barrhorn (zone pennique, Valais, Suisse). Thèse de Doctorat, Univer de Lausanne

  • Sebastian A (1990) Contribution à l'étude des pegmatites granitiques à éléments alcalins: équilibres entre silicates de Li, Na et Cs et fluides hydrothermaux de 300 à 750°C. Thèse de Doctorat Univer Paris Sud

  • Stone CG, Milton C (1976) Lithium mineralization in Arkansas US. Geol Surv Prof Pap 1005: 137–142

    Google Scholar 

  • Theye T (1988) Aufsteigende Hochdruckmetamorphose in Sedimenten der Phyllit-Quarzit-Einheit Kretas und des Peloponnes. Diss Technische Universität Braunschweig

  • Touray JC, Barlier J (1974) Liquid and gaseous hydrocarbon inclusions in quartz monocrystals from “Terres Noires” and “flysch à helminthoïdes” (French Alps). Fortschr Mineral 52: 419–426

    Google Scholar 

  • Tuttle OF (1949) Two pressure vessels for silicate-water studies. Bull Geol Soc Am 60: 1727–1729

    Google Scholar 

  • Vidal O, Goffé B (1989) Etude expérimentale préliminaire de l'équilibre: bikitaite = spodumène+eau. Cr Acad Sci Paris 309: 233–238

    Google Scholar 

  • Vrublevskaja ZU, Delistsin IS, Zvyagin BB, Soboleva SU (1975) Cookeite with a perfect regular structure formed by bauxite alteration. Am Mineral 60: 1041–1045

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, O., Goffé, B. Cookeite LiAl4(Si3Al)O10(OH)8: Experimental study and thermodynamical analysis of its compatibility relations in the Li2O−Al2O3−SiO2−H2O system. Contr. Mineral. and Petrol. 108, 72–81 (1991). https://doi.org/10.1007/BF00307327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307327

Keywords

Navigation