Skip to main content
Log in

Electrical and mechanical responses of chromatophore muscle fibers of the squid, Loligo opalescens, to nerve stimulation and drugs

  • Published:
Zeitschrift für vergleichende Physiologie Aims and scope Submit manuscript

Summary

The muscle fibers of brown and red chromatophores in the skin of the squid, Loligo opalescens, respond to motor nerve stimulation with non-propagating excitatory postsynaptic potentials (e.p.s.p.'s) of fluctuating amplitude. Depending on the strength of stimulation several size classes of e.p.s.p.'s are found, indicating polyneuronal innervation. Facilitation and summation are minimal even though the reversal potential of the e.p.s.p.'s is close to zero.

Acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) have no effect on membrane characteristics of the muscle fiber, but ACh greatly augments the “spontaneous” quantal release of transmitter [increase in the frequency of miniature postsynaptic potentials (m.p.s.p.'s)] and thereby causes tonic contraction (“miniature tetanus”). 5-HT reduces the frequency of miniature potentials and abolishes tonic contraction. Inhibition of cholinesterase by eserine does not affect the amplitude or time course of e.p.s.p.'s and of m.p.s.p.'s. High concentrations of cholinergic blocking agents (atropine, banthine) reduce the postsynaptic effects of nerve stimulation in some cases. The natural transmitter substance of the motoneurones may not be ACh. The action of 5-HT appears to be intracellular.

Neighboring muscle fibers are electrically coupled through low resistance pathways. These are most likely provided by the close junctions that form part of the myo-muscular junctions. The specific membrane resistance of the regular muscle fiber membrane was found to range from 1,056 to 1,320 Ohm×cm2, that of the close junctions ranges from 12.8 to 22.6 Ohm×cm2. The area occupied by close junctions is small, however, and only 10% of the current injected into one cell passes into the next. Some of the e.p.s.p.'s observed in a given muscle fiber most likely represent the electrotonic spread of the e.p.s.p.'s of the neighbor fibers. Of the six classes of e.p.s.p.'s observed in some muscle fibers, only two may originate in these fibers themselves.

Chromatophores in aged preparations often exhibit pulsations. These are caused by spike potentials arising within muscle fibers whose membranes have become electrically excitable. Each spike is preceded by a generator depolarization. The electrical coupling of neighboring muscle cells permits conduction of the spike potentials throughout the set of muscle fibers of a pulsating chromatophore. Altered conditions within such preparations also lead to tonic contractions and contractures that are not necessarily accompanied by electrical activity. Several arguments are presented in support of the hypothesis that the “tonic condition” of nerve terminals (characterized by enhanced spontaneous transmitter release) and of muscle fibers (characterized by inability to relax) is due to an abnormal condition of intracellular calcium (lack of Ca-binding by sarcoplasmic reticulum or other storage sites).

No evidence could be found for an inhibitory innervation of the chromatophore muscles. The nerve-induced relaxation of tonically contracted muscle fibers is caused by the action of motoneurones.

Preliminary experiments on muscle fibers of the anterior byssus retractor muscle of Mytilus support the hypothesis that the tonic behavior (“catch”) of other molluscan muscles is due to mechanisms similar to those found in the chromatophore muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, M. V. L.: Physiology of electrotonic junctions. Ann. N.Y. Acad. Sci. 137, 509–539 (1966).

    Google Scholar 

  • Bozler, E.: Über die Frage des Tonussubstrates. Z. vergl. Physiol. 7, 407–435 (1928).

    Google Scholar 

  • —: Über die Tätigkeit der einzelnen glatten Muskelfasern bei der Kontraktion. II. Mitt. Die Chromatophorenmuskeln der Cephalopoden. Z. vergl. Physiol. 7, 379–406 (1928).

    Google Scholar 

  • —: Über die Tätigkeit der einzelnen glatten Muskelfaser bei der Kontraktion. 3. Mitt. Registrierung der Kontraktionen der Chromatophorenmuskelzellen von Cephalopoden. Z. vergl. Physiol. 13, 762–772 (1931).

    Google Scholar 

  • Burn, J. H., and M. J. Rand: A new interpretation of the adrenergic nerve fiber. In: Advances in pharmacology (S. Garattini, editor). New York and London: Acad. Press 1962.

    Google Scholar 

  • —: Acetylcholine in adrenergic transmission. Ann. Rev. Pharmacol. 5, 163–182 (1965).

    Google Scholar 

  • Cloney, R. A., and E. Florey: Ultrastructure of cephalopod chromatophore organs. Z. Zellfsch. 89, 250–280 (1968).

    Google Scholar 

  • Fatt, P., and B. Katz: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    Google Scholar 

  • Florey, E.: Acetylcholine in invertebrate nervous systems. Canad. J. Biochem. Physiol. 41, 2619–2626 (1963).

    Google Scholar 

  • —: Nervous control and spontaneous activity of the chromatophores of a cephalopod, Loligo opalescens. Comp. Biochem. Physiol. 18, 305–324 (1966).

    Google Scholar 

  • —, and M. E. Kriebel: A new suction-electrode system. Comp. Biochem. Physiol. 18, 175–178 (1966).

    Google Scholar 

  • Hill, A. V., and D. Y. Solandt: Myograms from the chromatophores of Sepia. J. Physiol. (Lond.) 126, 13P-14P (1954).

    Google Scholar 

  • Hofmann, F. B.: Histologische Untersuchungen über die Innervation der glatten und der ihr verwandten Muskulatur der Wirbeltiere und Mollusken. Arch. mikr. Anat. 70, 361–413 (1907).

    Google Scholar 

  • —: Gibt es in der Muskulatur der Mollusken periphere, kontinuierlich leitende Nervennetze bei Abwesenheit von Ganglienzellen ? Pflügers Arch. ges. Physiol. 118, 375–412 (1907).

    Google Scholar 

  • —: Gibt es in der Muskulatur der Mollusken periphere, kontinuierlich leitende Nervennetze bei Abwesenheit von Ganglienzellen ? Pflügers Arch. ges. Physiol. 132, 43–81 (1910).

    Google Scholar 

  • —: Chemische Reizung und Lähmung markloser Nerven und glatter Muskeln wirbelloser Tiere. Pflügers Arch. ges. Physiol. 132, 82–130 (1910).

    Google Scholar 

  • Hoyle, G., and J. Lowy: The paradox of Mytilus muscle. A new interpretation. J. exp. Biol. 33, 295–310 (1956).

    Google Scholar 

  • Katz, B., and R. Miledi: A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192, 407–436 (1967).

    Google Scholar 

  • Koelle, G. B.: A new general concept on the neurohumoral function of acetylcholine and acetylcholinesterase. J. Pharm. Pharmacol. 14, 65–90 (1962).

    Google Scholar 

  • Lowy, J., and B. M. Millman: The contractile mechanism of the anterior byssus retractor muscle of Mytilus edulis. Phil. Trans. B 246, 105–148 (1963).

    Google Scholar 

  • Ruegg, J. C.: Actomyosin inactivation by thiourea and the nature of viscous tone in a molluscan smooth muscle. Proc. roy. Soc. B 158, 177–195 (1963).

    Google Scholar 

  • Twarog, B. M.: Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J. cell. comp. Physiol. 44, 141–164 (1954).

    Google Scholar 

  • —: Effects of acetylcholine and 5-hydroxytryptamine on the contraction of a molluscan smooth muscle. J. Physiol. (Lond.) 152, 236–242 (1960).

    Google Scholar 

  • —: The regulation of catch in molluscan muscle. J. gen. Physiol. 50, 157–169 (1967).

    Google Scholar 

  • —: Factors influencing contraction and catch in Mytilus smooth muscle. J. Physiol. (Lond.) 192, 847–856 (1967).

    Google Scholar 

  • Wiersma, C. A. G., E. Furshpan, and E. Florey: Physiological and pharmacological observations on muscle receptor organs of the crayfish Cambarus clarkii Girard. J. exp. Biol. 30, 136–150 (1953).

    Google Scholar 

  • Witzleb, E.: Zur Frage von cholinergischen Mechanismen bei der Erregung von afferenten Systemen. Pflügers Arch. ges. Physiol. 269, 439–470 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by Public Health Service Grant No. NB 04145 from the National Institute of Neurological Diseases and Blindness. We are grateful to the director of the Friday Harbor Laboratories, Prof. R. L. Fernald for providing space and facilities for this investigation.

Supported by a Training Grant GM 1194 from the National Institute of General Medical Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florey, E., Kriebel, M.E. Electrical and mechanical responses of chromatophore muscle fibers of the squid, Loligo opalescens, to nerve stimulation and drugs. Z. Vergl. Physiol. 65, 98–130 (1969). https://doi.org/10.1007/BF00297991

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00297991

Keywords

Navigation