Skip to main content
Log in

Potentiation of force by extracellular potassium and posttetanic potentiation are additive in mouse fast-twitch muscle in vitro

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The influence of moderately elevated extracellular potassium concentration ([K+]) on muscle force has marked similarities to that of posttetanic potentiation (PTP) in that twitch force may be enhanced whilst high-frequency force is depressed. The purpose of this work was to test whether K+-induced potentiation is mechanistically related to PTP via skeletal myosin light-chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chains (RLC). To do this, we assessed the influence of elevated [K+] on the force response at various frequencies in extensor digitorum longus (EDL) muscles isolated from wild-type and skeletal myosin light-chain kinase (skMLCK−/−) absent mice. Changing [K+] of the incubation medium from 5 to 10 mmol increased isometric twitch force by a similar amount in wild-type and skMLCK−/− muscles (~ 13% in both genotypes) (all data n = 7–8, P < 0.05). In contrast, 100- and 200-Hz forces were depressed in both genotypes (by 5–7 and 15–18%, respectively). The isometric twitch potentiation caused by a tetanic stimulus series was similar at both [K+] levels for each genotype but was much greater for wild-type than for skMLCK−/− muscles (i.e., 23–25 and 8–9%, respectively). Thus, we conclude that [K+]- and stimulation-induced potentiation are additive and that [K+]-induced potentiation is independent of RLC phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown GL, von Euler US (1938) The after effects of a tetanus on mammalian muscle. J Physiol 93:39–60. https://doi.org/10.1113/jphysiol.1938.sp003623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bunda J, Gittings W, Vandenboom R (2018) Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation J Exp Biol 221. https://doi.org/10.1242/jeb.167718

  3. Cairns SP, Hing WA, Slack JR, Mills RG, Loiselle DS (1997) Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle. Am J Physiol 273:C598-611. https://doi.org/10.1152/ajpcell.1997.273.2.C598

    Article  CAS  PubMed  Google Scholar 

  4. Cairns SP, Leader JP, Loiselle DS (2011) Exacerbated potassium-induced paralysis of mouse soleus muscle at 37 degrees C vis-a-vis 25 degrees C: implications for fatigue. K+ -induced paralysis at 37 degrees C. Pflugers Arch 461:469–479. https://doi.org/10.1007/s00424-011-0927-4

    Article  CAS  PubMed  Google Scholar 

  5. Gittings W, Bunda J, Vandenboom R  (2018) Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles J ExpBiol 221. https://doi.org/10.1242/jeb.167742

  6. Gittings W, Huang J, Smith IC, Quadrilatero J, Vandenboom R (2011) The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle. J Muscle Res Cell Motil 31:337–348. https://doi.org/10.1007/s10974-011-9239-8

    Article  CAS  PubMed  Google Scholar 

  7. Grob D, Liljestrand A, Johns RJ (1957) Potassium movement in normal subjects: effect on muscle function. Am J Med 23:340–355. https://doi.org/10.1016/0002-9343(57)90315-7

    Article  CAS  PubMed  Google Scholar 

  8. Holmberg E, Waldeck B (1980) On the possible role of potassium ions in the action of terbutaline on skeletal muscle contractions. Acta Pharmacol Toxicol (Copenh) 46:141–149. https://doi.org/10.1111/j.1600-0773.1980.tb02434.x

    Article  CAS  Google Scholar 

  9. MacIntosh BR, Taub EC, Dormer GN, Tomaras EK (2008) Potentiation of isometric and isotonic contractions during high-frequency stimulation. Pflugers Arch 456:449–458. https://doi.org/10.1007/s00424-007-0374-4

    Article  CAS  PubMed  Google Scholar 

  10. Morris SR, Gittings W, Vandenboom R (2018) Epinephrine augments posttetanic potentiation in mouse skeletal muscle with and without myosin phosphorylation. Physiol Rep 6:e13690. https://doi.org/10.14814/phy2.13690

  11. Olesen JH, Herskind J, Pedersen KK, Overgaard K (2021) Potassium-induced potentiation of subtetanic force in rat skeletal muscles: influences of β2-activation, lactic acid, andtemperature. Am J Physiol Cell Physiol 321(5):C884–C896. https://doi.org/10.1152/ajpcell.00120.2021

    Article  CAS  PubMed  Google Scholar 

  12. Padron R, Ma W, Duno-Miranda S, Koubassova N, Lee KH, Pinto A, Alamo L, Bolanos P, Tsaturyan A, Irving T, Craig R (2020) The myosin interacting-heads motif present in live tarantula muscle explains tetanic and posttetanic phosphorylation mechanisms. Proc Natl Acad Sci U S A 117:11865–11874. https://doi.org/10.1073/pnas.1921312117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pedersen KK, Cheng AJ, Westerblad H, Olesen JH, Overgaard K (2019) Moderately elevated extracellular [K(+)] potentiates submaximal force and power in skeletal muscle via increased [Ca(2+)]i during contractions Am J Physiol Cell Physiol. https://doi.org/10.1152/ajpcell.00104.2019

  14. Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem 260:7951–7954

    Article  CAS  Google Scholar 

  15. Quinonez M, Gonzalez F, Morgado-Valle C, DiFranco M (2010) Effects of membrane depolarization and changes in extracellular [K(+)] on the Ca (2+) transients of fast skeletal muscle fibers. Implications for muscle fatigue. J Muscle Res Cell Motil 31:13–33. https://doi.org/10.1007/s10974-009-9195-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rassier DE, Tubman LA, MacIntosh BR (1999) Staircase in mammalian muscle without light chain phosphorylation. Braz J Med Biol Res 32:121–129. https://doi.org/10.1590/s0100-879x1999000100018

    Article  CAS  PubMed  Google Scholar 

  17. Renaud JM, Light P (1992) Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo. Can J Physiol Pharmacol 70:1236–1246. https://doi.org/10.1139/y92-172

    Article  CAS  PubMed  Google Scholar 

  18. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531. https://doi.org/10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

  19. Sejersted OM, Sjøgaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481. https://doi.org/10.1152/physrev.2000.80.4.1411

    Article  CAS  PubMed  Google Scholar 

  20. Smith IC, Gittings W, Huang J, McMillan EM, Quadrilatero J, Tupling AR, Vandenboom R (2013) Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible? J Gen Physiol 141:297–308. https://doi.org/10.1085/jgp.201210918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stull JT, Kamm KE, Vandenboom R (2011) Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch Biochem Biophys 510:120–128. https://doi.org/10.1016/j.abb.2011.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vandenboom R, Gittings W, Smith IC, Grange RW, Stull JT (2013) Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models. J Muscle Res Cell Motil 34:317–332. https://doi.org/10.1007/s10974-013-9363-8

    Article  CAS  PubMed  Google Scholar 

  23. Vandenboom R, Grange RW, Houston ME (1993) Threshold for force potentiation associated with skeletal myosin phosphorylation. Am J Physiol 265:C1456-1462. https://doi.org/10.1152/ajpcell.1993.265.6.C1456

    Article  CAS  PubMed  Google Scholar 

  24. Vandenboom R, Grange RW, Houston ME (1995) Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle. Am J Physiol 268:C596-603. https://doi.org/10.1152/ajpcell.1995.268.3.C596

    Article  CAS  PubMed  Google Scholar 

  25. Walker SM (1948) Action potentials in rat muscle with twitch tension potentiated by KCI treatment, adrenalectomy, tetanus and treppe. Am J Physiol 154:63–72. https://doi.org/10.1152/ajplegacy.1948.154.1.63

    Article  CAS  PubMed  Google Scholar 

  26. Westerblad H, Bruton JD, Katz A (2010) Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Exp Cell Res 316:3093–3099. https://doi.org/10.1016/j.yexcr.2010.05.019

    Article  CAS  PubMed  Google Scholar 

  27. Yensen C, Matar W, Renaud JM (2002) K+-induced twitch potentiation is not due to longer action potential. Am J Physiol Cell Physiol 283:C169–C177. https://doi.org/10.1152/ajpcell.1997.273.2.C598

    Article  CAS  PubMed  Google Scholar 

  28. Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT (2005) Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci U S A 102:17519–17524. https://doi.org/10.1073/pnas.0506846102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aagaard P (2003) Training-induced changes in neural function. Exerc Sport Sci Rev 31:61–67. https://doi.org/10.1097/00003677-200304000-00002

    Article  PubMed  Google Scholar 

  30. Aagaard P, Magnusson PS, Larsson B, Kjaer M, Krustrup P (2007) Mechanical muscle function, morphology, and fiber type in lifelong trained elderly. Med Sci Sports Exerc 39:1989–1996. https://doi.org/10.1249/mss.0b013e31814fb402

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Val Andrew Fajardo for valuable guidance and methodological input and Sebastian Silvera for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Kristian Overgaard and Rene Vandenboom contributed to the study conception and design. All authors contributed to data collection and analysis and to writing and commenting on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kristian Overgaard.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overgaard, K., Gittings, W. & Vandenboom, R. Potentiation of force by extracellular potassium and posttetanic potentiation are additive in mouse fast-twitch muscle in vitro. Pflugers Arch - Eur J Physiol 474, 637–646 (2022). https://doi.org/10.1007/s00424-022-02681-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-022-02681-z

Navigation