Skip to main content
Log in

In vitro aging of red blood cells and lipid peroxidation

  • Original Investigations
  • Radical Mechanisms and Lipid Peroxidation
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Incubating isolated erythrocytes in phosphate buffered saline supplied with sufficient glucose (20 mM) for several days resulted in methemoglobin formation and decrease in glycolytic and antioxidant enzyme activities. Volatile hydrocarbon gas release (ethane, ethylene, propane, butane, isobutane, pentane) and loss of the polyunsaturated fatty acids, arachidonic acid (20∶4) and docosahexaenoic acid (22∶6) in the erythrocyte membrane indicated possible involvement of peroxidative reactions in cellular aging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer G, Jung A, Wendel A (1982) Die Aktivität des Glutathion-Redoxsystems in menschlichen Erythrocyten unterschiedlichen Alters. Klin Wochenschr 60: 867–869

    Google Scholar 

  • Beutler E, West C, Blume KG (1976) The removal of leukocytes and platelets from whole blood. J Lab Clin Med 88: 328–333

    Google Scholar 

  • Clemens MR, Remmer H (1982) Volatile alkanes produced by erythrocytes: an assay for in vitro studies on lipid peroxidation. Blut 45: 329–335

    Google Scholar 

  • Clemens MR, Einsele H, Frank H, Remmer H, Waller HD (1983) Volatile hydrocarbons from hydrogen peroxide-induced lipid peroxidation of erythrocytes and their cell components. Biochem Pharmacol 32: 3877–3878

    Google Scholar 

  • Clemens MR, Einsele H, Remmer H, Waller HD (1985) Decreased susceptibility of red blood cells to peroxidation in patients with alcoholic liver cirrhosis. Clin Chim Acta 145: 283–288

    Google Scholar 

  • De Flora A, Morelli A, Benath U, Pontremoli S, Melloni E, Salamino F, Sparatore B, Michetti M, Melloni T (1982) Membrane lipid components of normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes of asymptomatic and favic subjects. Acta Biol Germ 40: 563–570

    Google Scholar 

  • Einsele H, Clemens MR, Remmer H (1985) Effect of ascorbate on red blood cell lipid peroxidation. Free Radical Res Commun 1: pp 63–67

    Google Scholar 

  • Frank H, Hintze T, Bimboes D, Remmer H (1980) Monitoring lipid peroxidation by breath analyses: endogenous hydrocarbons and their elimination. Toxicol Appl Pharmacol 56: 337–341

    Google Scholar 

  • Van Gastel C, van den Berg D, de Grier J, van Deenen LLM (1965) Lipid characteristics of red cells. Br J Haematol 11: 1983–1999

    Google Scholar 

  • Glass GA, Gershon D (1981) Enzymatic changes in rat erythrocytes with increasing cell and donor age: loss of superoxide dismutase activity associated with increases in catalytically defective forms. Biochem Biophys Res Commun 103: 1245–1253

    Google Scholar 

  • Glass GA, Gershon H, Gershon D (1983) The effect of Donor and Cell age on several characteristics of rat erythrocytes. Exp Haematol 11: 987–995

    Google Scholar 

  • Glass GA, Gershon D (1984) Decreased enzymic protection and increased sensitivity to oxidative damage in erythrocytes as a function of cell and donor aging. Biochem J 218: 531–537

    Google Scholar 

  • Henry R, Cannon DC, Winkleman JW (1974) Methemoglobin in clinical chemistry, principles and practice. Harper and Row, New York, p 1149

    Google Scholar 

  • Jain SK, Hochstein P (1980) Polymerization of membrane components in aging red blood cells. Biochem Biophys Res Commun 92: 247–254

    Google Scholar 

  • Karle H (1969) Destruction of erythrocytes during experimental fever. Br J Haematol 16: 409–415

    Google Scholar 

  • Löhr GW, Waller HD (1959) Zellstoffwechsel und Zellalterung. Klin Wochenschr 37: 833–843

    Google Scholar 

  • Löhr GW, Waller HD (1962) Zur Biochemie der Erythrocytenalterung. Folia Haematol 78: 117–134

    Google Scholar 

  • Munn JI (1958) Studies of lipids in human red cells. Br J Haematol 4: 344–349

    Google Scholar 

  • Munn JI, Crosby WH (1961) Red-cell lipids in various abnormalities of the human red cell. Br J Haematol 7: 523–528

    Google Scholar 

  • Phillips GB, Doge JT, Howe CC (1969) The effect of aging of human red cells in vivo on their fatty acid composition. Lipids 4: 544–549

    Google Scholar 

  • Reznick AZ, Lavie L, Gershon HE, Gershon D (1981) Age-associated accumulation of altered FDP aldolase B in mice. FEBS Lett 128: 221–224

    Google Scholar 

  • Seaman C, Wyss C, Piomelli S (1980) The decline in energetic metabolism with aging of the erythrocyte and its relationship to cell death. Am J Haematol 8: 31–42

    Google Scholar 

  • Vettore L, De Matteis MC, Zampini P (1980) A new density gradient system for the separation of human red blood cells. Am J Haematol 8: 291–297

    Google Scholar 

  • Waller HD (1960) Beziehungen zwischen Zellstoffwechsel und Zellalterung. Habil Schrift, Marburg 1960

    Google Scholar 

  • Waller HD, Birke FJ, Tigges FJ, Benöhr HC (1974) Glutathiongehalt und Glutathion-reduzierende Enzyme in Erythrozyten verschiedenen Alters. Klin Wochenschr 52: 179–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. med. Herbert Remmer on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einsele, H., Clemens, M.R. & Remmer, H. In vitro aging of red blood cells and lipid peroxidation. Arch Toxicol 60, 163–166 (1987). https://doi.org/10.1007/BF00296972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00296972

Key words

Navigation