Skip to main content
Log in

Lethal and mutagenic effects of elevated temperature on haploid yeast

I. Variations in sensitivity during the cell cycle

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The lethal and cytoplasmic mutagenic effects of 52°C incubation during the cell cycle of a haploid strain of Saccharomyces cerevisiae were examined. Both effects varied periodically in a rather parallel pattern: the maximum thermosensitivity was seen at budding time, corresponding to the S period (Williamson, 1965). The 52°C induction of a nuclear forward mutation was also examined: canavanine-resistant mutants were induced by this treatment. Exponentially growing cells were much more sensitive than resting cells to the different effects of heating which were studied. On the other hand, on comparing asynchronous cultures of 6 different radiosensitive mutants only one (xrs5) showed a greater thermosensitivity than the corresponding wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachetti, S., Cassandro, M., Mauro, F.: Radiosensitivity in relation to the cell cycle and recovery from X-ray sublethal damage in diploid yeast. Exp. Cell Res. 46, 292–300 (1967).

    Google Scholar 

  • Bridges, B. A., Ashwood-Smith, M. J., Munson, R. J.: Correlation of bacterial sensitivities to ionizing radiation and mild heating. J. gen. Microbiol. 58, 115–124 (1969).

    Google Scholar 

  • Byfield, J. E., Scherbaum, O. H.: Suppression of RNA and protein accumulation by temperature shifts in a heat-synchronized protozoan. Life Sci. 5, 2263–2269 (1966).

    Google Scholar 

  • Carnevalli, F., Piperno, G., Tecce, G.: Satellite components of DNA from a cytoplasmic “petite” mutant of Saccharomyces cerevisiae. Rend. sc. Fis. Mat. e Nat. 41, 194–196 (1966).

    Google Scholar 

  • Chanet, R.: Étude de l'évolution de l'effet létal et mutagène cytoplasmique des ultraviolets dans des cultures synchrones de souches de radiosensibilité différente de Saccharomyces cerevisiae. Diplôme d'Etudes Approfondies, Faculté des Sciences, Orsay, 1971.

  • Cox, B. S., Parry, J. M.: The isolation, genetics and survival characteristics of UV light sensitive mutants in yeast. Mutation Res. 6, 37–55 (1968).

    Google Scholar 

  • Esposito, R. E.: Genetic recombination in synchronized cultures of Saccharomyces cerevisiae. Genetics 59, 191–210 (1968).

    Google Scholar 

  • Evenson, D. P., Prescott, D. M.: Disruption of DNA synthesis in Euplotes by heat shock. Exp. Cell Res. 63, 245–252 (1970).

    Google Scholar 

  • Game, J. C., Cox, B. S.: Allelism tests of mutants affecting sensitivity to radiation in yeast and a proposed nomenclature. Mutation Res. 12, 328–331 (1971).

    Google Scholar 

  • Gause, F. G., Kusovkova, L. I.: Temperature sensitivity in the respiratory deficient mutants of yeast. Experientia (Basel) 26, 209–210 (1970).

    Google Scholar 

  • Ginoza, W., Zimm, B. H.: Mechanisms of inactivation of deoxyribonucleic acids by heat. Proc. nat. Acad. Sci. (Wash.) 47, 639–652 (1961).

    Google Scholar 

  • Heiberg, B.: Die Thermoresistenz bei jungen und alten Bakterien und „jungen” und „alten” Bakteriophagen. Z. ges. Hyg. 114, 425–428 (1933).

    Google Scholar 

  • Latarjet, R., Morenne, P., Berger, R.: Un appareil simple pour le dosage des rayonnements ultraviolets émis par les lampes germicides. Ann. Inst. Pasteur 85, 174–184 (1953).

    Google Scholar 

  • Levine, E. M., Robbins, E. B.: Differential temperature sensitivity of normal and cancer cells in culture. J. cell. Physiol. 76, 373–380 (1970).

    Google Scholar 

  • Louderback, A. L., Sherbaum, O. H., Jahn, T. L.: The effect of temperature shifts on the budding cycle of Saccharomyces cerevisiae. Exp. Cell Res. 25, 437–454 (1961).

    Google Scholar 

  • Matsumoto, S., Kagami-Ishi, Y.: The temperature dependence of mortality rate of radiosensitive strains of E. coli and Saccharomyces cerevisiae. Jap. J. Genet. 45, 153–160 (1970).

    Google Scholar 

  • Mitchison, J. M., Vincent, W. S.: Preparation of synchronous cell cultures by sedimentation. Nature (Lond.) 205, 987–989 (1965).

    Google Scholar 

  • Mounolou, J. C., Jakob, H., Slonimski, P. P.: Mitochondrial DNA from yeast “petite” mutants: specific changes of buoyant density corresponding to different cytoplasmic mutations. Biochem. biophys. Res. Commun. 24, 218–224 (1966).

    Google Scholar 

  • Moustacchi, E.: Cytoplasmic and nuclear genetic events induced by UV light in strains of Saccharomyces cerevisiae with different UV-sensitivities. Mutation Res. 7, 171–185 (1969).

    Google Scholar 

  • Mukkerjee, P., Bhattacharjee, S. B.: Recovery of bacteria from damages induced by heat. J. gen. Microbiol. 60, 233–238 (1970).

    Google Scholar 

  • Muller, H. J.: The measurement of gene mutation rate in Drosophila, its high variability and its dependence upon temperature Genetics 13, 279–357 (1928).

    Google Scholar 

  • Nagley, P., Linnane, A. W.: Mitochondrial DNA deficient petite mutants of yeast. Biochem. biophys. Res. Commun. 39, 989–996 (1970).

    Google Scholar 

  • Ogur, M., St John, R.: A differential and diagnostic plating method for population studies of respiration deficiency in yeast. J. Bact. 72, 500–504 (1956).

    Google Scholar 

  • Ogur, M., St John, R., Nagai, S.: Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125, 928–929 (1957).

    Google Scholar 

  • Parry, J. M., Parry, E. M.: The effects of UV light post-treatments on the survival characteristics of 21 UV-sensitive mutants of Saccharomyces cerevisiae. Mutation Res. 8, 545–556 (1969).

    Google Scholar 

  • Plough, H. H.: The effect of temperature on crossing-over in Drosophila. J. exp. Zool. 24 143–209 (1917).

    Google Scholar 

  • Pollard, E. C., Solosko, W.: The thermal inactivation of T4 and λ bacteriophages. Biophys. J. 11, 66–74 (1971).

    Google Scholar 

  • Resnick, M. A.: Genetic control of lethality and mutation in Saccharomyces cerevisiae. Ph. D. Thesis, University of California UCRL-18404 (1968).

  • Roger, M., Hotchkiss, R. D.: Selective heat inactivation of pneumococcal transforming deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.) 47, 653–669 (1961).

    Google Scholar 

  • Rosenberg, A. M., Wood, T. H.: The modifying effect of culture age on heat sensitivity of yeast. Exp. Cell Res. 12, 692–694 (1957).

    Google Scholar 

  • Rosenthal, L. J., Iandolo, J. J.: Thermally induced intracellular alterations of ribosomal ribonucleic acid. J. Bact. 103, 833–835 (1970).

    Google Scholar 

  • Schulze, C.: Die Anwendung des Pasteurisierens gegen Nachgärungen der Weine auf den Flaschen. Landwirtsch. Jahrb. 24, 403–433 (1895).

    Google Scholar 

  • Sherman, F.: The heat inactivation and production of cytochrome deficiency in yeast. Exp. Cell Res. 11, 659–660 (1956).

    Google Scholar 

  • Sherman, F.: A study of the effects of elevated temperatures on the growth and inheritance of Saccharomyces cerevisiae. Ph. D. Thesis, University of California, UCRL-8573 (1958).

  • Sogin, S. J., Ordal, Z. J.: Regeneration of ribosomes and ribosomal ribonucleic acid during repair of thermal injury to Staphylococcus aureus. J. Bact. 94, 1082–1087 (1967).

    Google Scholar 

  • Suslova, N. G., Zakharov, I. A.: The gene controlled radiation sensitivity of yeast. VII. Identification of the genes for the X-ray sensitivity. Genetica 6, 158–163 (1970).

    Google Scholar 

  • Westra, A., Dewey, W. C.: Variation in sensitivity to heat shock during the cell cycle of Chinese hamster cells in vitro. Int. J. Radiat. Biol. 19, 467–477 (1971)

    Google Scholar 

  • Wiame, J. M., Bechet, J., Mousset, M., Deken Grenson M. de: Mise en évidence d'une perméase de l'arginine chez Saccharomyces cerevisiae. Arch. int. Physiol. Biochim. 70, 766–767 (1962).

    Google Scholar 

  • Williamson, D. H.: Division synchrony in yeasts. In: Synchrony in cell division and growth. Zeuthen, New York: John Wiley & Sons 1964.

    Google Scholar 

  • Williamson, D. H.: The timing of deoxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 25, 517–528 (1965).

    Google Scholar 

  • Williamson, D. H., Moustacchi, E.: The synthesis of mitochondrial DNA during the cell cycle in the yeast Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 42, 195–201 (1971).

    Google Scholar 

  • Woese, C.: Thermal inactivation of animal viruses. Ann. N.Y. Acad. Sci. 83, 741–751 (1960).

    Google Scholar 

  • Wood, T. H.: Lethal effects of high and low temperatures on unicellular organisms. Advanc. biol. med. Phys. 4, 119–165 (1956).

    Google Scholar 

  • Zamenhof, S.: Effects of heating dry bacteria and spores on their phenotype and genotype. Proc. nat. Acad. Sci. (Wash.) 46, 101–105 (1960).

    Google Scholar 

  • Zamenhof, S., Greer, S.: Heat as an agent producing high frequency of mutations and unstable genes in E. coli. Nature (Lond.) 182, 611–613 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. A. Bridges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenberg-Frascino, A., Moustacchi, E. Lethal and mutagenic effects of elevated temperature on haploid yeast. Molec. Gen. Genet. 115, 243–257 (1972). https://doi.org/10.1007/BF00268888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268888

Keywords

Navigation