Skip to main content
Log in

Ab initio molecular orbital studies of closed shell flavins

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Ab initio calculations with a (7 s 3 p) basis set are performed on uracil, lumazine, alloxazine and various isoalloxazines. The results as total energies and charge distributions are discussed in relation to the biochemical behaviour of the flavins. The calculations correctly predict equilibrium situations in the alloxazine-isoalloxazine system and explain the high affinity for nucleophilic addition at N5 in the flavins. The reduction of flavins and their reoxidation by oxygen are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RF (1982) Flavin-oxygen complex formed on the reaction of superoxide ions with flavosemiquinone radicals. In: Massey V, Williams CH (eds) Flavins and flavoproteins. Elsevier North Holland, New York, pp 278–283

    Google Scholar 

  • Brown CA (1970) Catalytic hydrogenation. V. The reaction of sodium borohydride with aqueous nickel salts. P-1 nickel boride, a convenient, highly active nickel hydrogenation catalyst. J Org Chem 35:1900–1904

    Google Scholar 

  • Bruice TC (1976) Some pertinent aspects of mechanism as determined with small molecules. Annu Rev Biochem 45: 331–373

    Google Scholar 

  • Bruice TC (1980) Mechanism of flavin catalysis. Acc Chem Res 13:256–262

    Google Scholar 

  • Bruice TC, Yano Y (1975) Radical mechanisms for 1,5-dihydro-5-methylflavin reduction of carbonyl compounds. J Am Chem Soc 97:5263–5271

    Google Scholar 

  • Colonna FP, Distefano G, Galasso V, Irgolic KJ, King CE, Pappalardo GC (1978) The conformation, UV-absorption spectra and photoelectron spectra of phenoxachalcogins. J Organomet Chem 146:235–244

    Google Scholar 

  • Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Google Scholar 

  • Dixon DA, Lindler DL, Branchaud B, Lipscomb WN (1979) Conformations and electronic structures of oxidized and reduced isoalloxazine. Biochemistry 18:5770–5775

    Google Scholar 

  • Dudley KH, Ehrenberg A, Hemmerich P, Müller F (1964) Spektren und Strukturen der am Flavin-Redox-System beteiligten Partikeln. Helv Chim Acta 47:1354–1383

    Google Scholar 

  • Dunning TH (1970) Gaussian basis functions for use in molecular calculations. I. Contraction of (9s 5p) atomic basis sets for the first-row atoms. J Chem Phys 53:2823–2833

    Google Scholar 

  • Eweg JK, Müller F, Van Dam H, Terpstra A, Oskam A (1980) He(I) and He(II) photoelectron spectra of alloxazines and isoalloxazines. J Am Chem Soc 102:51–61

    Google Scholar 

  • Flemming I (1975) Frontier orbitals and organic chemical reactions. John Wiley, New York

    Google Scholar 

  • Fritchie CJ (1975) Least-squares determination of idealized molecular dimensions and orientations from crystallographic positional coordinates. Acta Crystallogr B31: 802–804

    Google Scholar 

  • Ghisla S (1982) Dehydrogenation mechanism in flavoprotein catalysis. In: Massey V, Williams CH (eds) Flavins and flavoproteins. Elsevier North Holland, New York, pp 133–142

    Google Scholar 

  • Grabe B (1972) Electronic structure and spectra of lumiflavin calculated by a restricted Hartree-Fock method. Acta Chem Scand 26:4084–4100

    Google Scholar 

  • Grabe B (1974) Semi-empirical calculations on lumiflavin regarding electronic structure and spectra. Acta Chem Scand A28:363–374

    Google Scholar 

  • Hemmerich P, Michel H, Schug C, Massey V (1982) Seope and limitation of single electron transfer in biology. Struct Bonding 48:93–130

    Google Scholar 

  • Karreman G (1961) Contribution to quantum biology. I. Mobile electronic characteristics of riboflavin radicals. Bull Math Biophys 23:55–68

    Google Scholar 

  • Kemal C, Chan TW, Bruice TC (1977) Reaction of 3O2 with dihydroflavin. 1. N3,5-dimethyl-1,5-dihydrolumiflavin and 1,5-dihydroisoalloxazines. J Am Chem Soc 99:7272–7286

    Google Scholar 

  • Kierkegaard P, Norrestam R, Werner PE, Csöregh I, Von Glehn M, Karlsson R, Leijonmarck M, Rönnquist O, Stensland B, Tillberg O, Torbjörnsson L (1971) X-ray struoture investigations of flavin derivatives. In: Kamin H (ed) Flavins and flavoproteins. University Park Press, Baltimore, MD, pp 1–22

    Google Scholar 

  • Kulakowska I, Geller M, Lesyng B, Wierzchowski KL (1974) Dipole moments of 2,4-diketopyrimidines. Part II: uracil, thymine and their derivatives. Biochim Biophys Acta 361: 119–130

    Google Scholar 

  • Lansburg PT, Peterson JO (1963) Lithium tetrakis-(N-dihydropyridyl)-aluminate: structure and reducing properties. J Am Chem Soc 85:2236–2242

    Google Scholar 

  • Lehninger AL (1976) Biochemistry. Worth, New York

    Google Scholar 

  • Leijonmarck M (1977) On the structure of flavin derivatives. Crystallographic studies and a review. Chem Commun Univ Stockholm No. 8:1–70

  • Massey V, Ghisla S (1974) Role of charge-transfer interactions in flavoprotein catalysis. Ann NY Acad Sci 227:446–465

    Google Scholar 

  • Müller F (1972) On the interaction of flavins with phosphine-derivatives. Z Naturforsch 27B:1023–1026

    Google Scholar 

  • Müller F (1983) The flavin redox system and its biological function. In: Boschke FL (ed) Topics in Current Chemistry. Springer. Berlin Heidelberg New York, pp 71–107

    Google Scholar 

  • Müller F, Massey V (1971) Sulfite interaction with free and protein bound flavin. Method Enzymol 18B:468–473

    Google Scholar 

  • Müller F, Massey V, Heizmann C, Hemmerich P, Lhoste JM, Gould DC (1969) The reduction of flavins by borohydride: 3,4-dihydroflavin. Eur J Biochem 9:392–401

    Google Scholar 

  • Norrestam R, Stensland B (1972) Studies on flavin derivatives. The crystal and molecular structure of 3-methyllumiflavin. Acta Crystallogr B28:440–447

    Google Scholar 

  • Norrestam R, Kierkegaard P, Stensland B, Torbjörnsson L (1969) 5-Acetyl-3,7,8,10-tetramethyl-1,5-dihydroalloxanzine: crystal structure and extended Hückel calculations for different molecular geometries. Chem Commun 1250–1251

  • Norrestam R, Stensland B, Söderberg E (1972) The crystal and molecular structure of lumazine hydrate. Acta Crystallogr B28:659–666

    Google Scholar 

  • O'Donnell TJ, LeBreton PR, Shipman LL (1978) Ab initio quantum mechanical characterization of the ground electronic state of uracil. J Phys Chem 82:343–347

    Google Scholar 

  • Palmer MH, Platenkamp RJ (1979) Ab initio molecular orbital studies of the flavins. In: Pullman B (ed) Catalysis in chemistry and biochemistry. Jerusalem Symposium on Quantum Chemistry and Biochemistry. D Reidel, Dordrecht, pp 147–169

    Google Scholar 

  • Palmer MH, Findlay RH, Gaskel AJ (1974) Electronic charge distribution and moments of five-and six-membered heterocycles. J Chem Soc Perkin Trans 2:420–428

    Google Scholar 

  • Palmer MH, Gaskell AJ, Findlay RH, Kennedy SMF, Moyes W, Nisbet JD (1975) Ground state wavefunctions for aromatic and heteromatic molecules. In: Saunders VR, Brown JD (eds) Quantum chemistry. The state of the art. Science Research Council, London, pp 229–234

    Google Scholar 

  • Palmer MH, Simpson I, Platenkamp RJ (1980) The electronic Structure of flavin derivatives. Part I: Ab initio calculations for 1H-alloxazine and 10H-isoalloxazine, their reduced derivatives and related compounds; assignments of photoelectron spectra. J Mol Struct 66:243–263

    Google Scholar 

  • Palmer MH, Wheeler JR, Platenkamp RJ, Visser AJWG (1982) The electronic structure of flavins by ab initio molecular orbital calculations and X-PES. In: Massey V, Williams CH Jr (eds) Flavins and flavoproteins. Elsevier North Holland. New York, pp 584–589

    Google Scholar 

  • Platenkamp RJ, Palmer MH, Visser AJWG (1980) Ab initio molecular orbital studies of flavin radicals and the lowest triplet state of isoalloxazine. J Mol Struct 67:45–64

    Google Scholar 

  • Porter DJT, Voet JG, Bright HJ (1973) Direct evidence for carbanions and covalent N5-flavin-carbanion adducts as catalytic intermediates in the oxidation of nitroethane by d-amino acid oxidase. J Biol Chem 248:4400–4416

    Google Scholar 

  • Pullman B, Pullman A (1959) The electronic structures of the respiratory coenzymes. Proc Natl Acad Sci USA 45: 136–144

    Google Scholar 

  • Song P-S (1968) Electronic structure and photochemistry of flavins. IV. σ-Electronic structure and the lowest triplet configuration of a flavin. J Phys Chem 72:536–542

    Google Scholar 

  • Song P-S (1971) Chemistry of flavins in their excited states. In: Kamin H (ed) Flavin and flavoproteins. University Park Press, Baltimore, MD, pp 536–542

    Google Scholar 

  • Song P-S, Sun M (1974) Reactivity maps for flavins. In: Bergman ED, Pullman B (eds) Chemical and biochemical reactivity. Israel Academy of Sciences, Jerusalem, pp 407–429

    Google Scholar 

  • Stewart RF, Jensen LH (1967) Redetermination of the crystal structure of uracil. Acta Crystallogr 23:1102–1105

    Google Scholar 

  • Sun M, Song P-S (1973) Excited states and reactivity of 5-deazaflavin. Comparative studies with flavin. Biochemistry 12:4663–4669

    Google Scholar 

  • Tauscher L, Ghisla S, Hemmerich P (1973) NMR-study of nitrogen inversion and conformation of 1,5-dihydroisoalloxazines (‘reduced flavin’). Helv Chim Acta 56: 630–644

    Google Scholar 

  • Walsh C (1978) Chemical approaches to the study of enzymes catalyzing redox transformations. Annu Rev Biochem 47: 881–931

    Google Scholar 

  • Williams RF, Bruice TC (1976) The kinetics and mechanisms of 1,5-dihydroflavin reduction of carbonyl compounds and flavin oxidation of alcohols. 2. Ethylpyruvate, pyruvamide and pyruvic acid. J Am Chem Soc 98:7752–7768

    Google Scholar 

  • You K-S, Arnold LJ, Kaplan NO (1977) The stereospecificity of bacterial external flavoprotein monooxygenases for nicotinamide adenine dinucleotide. Arch Biochem Biophys 180:550–554

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platenkamp, R.J., Palmer, M.H. & Visser, A.J.W.G. Ab initio molecular orbital studies of closed shell flavins. Eur Biophys J 14, 393–402 (1987). https://doi.org/10.1007/BF00254862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00254862

Key words

Navigation