Skip to main content
Log in

Bacterial sulphur respiration

  • Minireview
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

D.:

Desulfuromonas

P.:

Pyrococcus

S.:

Sulfurospirillum

T.:

Thermotoga

W:

Wolinella

References

  • Adams MWW (1990) The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Lett 75: 219–238

    Article  CAS  Google Scholar 

  • Barrett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51: 192–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belkin S, Wirsen CO, Jannasch HW (1986) A new sulphur-reducing, extremely thermophilic eubacterium from a submarine thermal vent. Appl Environ Microbiol 51: 1180–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112: 115–117

    Article  CAS  Google Scholar 

  • Blumentals II, Itoh M, Olson GJ, Kelly RM (1990) Role of polysulphides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56: 1255–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bokranz M, Mörschel E, Kröger A (1985) Phosphorylation and phosphate-ATP exchange catalyzed by the ATP synthase isolated from Wolinella succinogenes. Biochim Biophys Acta 810: 332–339

    Article  CAS  Google Scholar 

  • Bokranz M, Gutmann M, Körtner C, Kojro E, Fahrenholz F, Lauterbach F, Kröger A (1991) Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol 156: 119–128

    Article  CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Stetter KO (1991) Interspecies hydrogen transfer in cocultures of thermophilic Archaea. System Appl Microbiol 14: 205–208

    Article  CAS  Google Scholar 

  • Bonch-Osmoloyskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov. and sp. nov. — a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153: 151–155

    Article  Google Scholar 

  • Boulègue J (1978) Solubility of elemental sulfur in water at 298 K. Phosphorus Sulfur 5: 127–128

    Article  Google Scholar 

  • Bronder M, Mell H, Stupperich E, Kröger A (1982) Biosynthetic pathways of Vibro succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131: 216–223

    Article  CAS  Google Scholar 

  • Emmel T, Sand W, König WA, Bock E (1986) Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyj. J Gen Microbiol 132: 3415–3420

    CAS  Google Scholar 

  • Fauque G, Herve D, Le Gall J (1979) Structure-function relationship in hemoproteins: the role of cytochrome c 3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol 121: 261–264

    Article  CAS  Google Scholar 

  • Fauque G, Le Gall J, Barton LL (1991) Sulfate-reducing and sulfur-reducing bacteria. In: Shively JM, Barton LL (eds) Variations in autotrophic life. Academic Press, London, pp 271–337

    Google Scholar 

  • Giggenbach W (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20°. Inorg Chem 11: 1201–1207

    Article  CAS  Google Scholar 

  • Hazeu W, Batenburg-van der Vegte WH, Bos P, Pas RK van der, Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxdidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150: 574–579

    Article  CAS  Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144: 324–333

    Article  CAS  Google Scholar 

  • Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch Microbiol 149: 95–101

    Article  CAS  Google Scholar 

  • Kletzin A (1989) Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171: 1638–1643

    Article  CAS  Google Scholar 

  • Klimmek O, Kröger A, Steudel R, Holdt G (1991) Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport. Arch Microbiol 155: 177–182

    Article  CAS  Google Scholar 

  • Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E, Kröger A (1992) Cloning and nucleotide sequences of the genes encoding the polysulphide reductase of Wolinella succinogenes. Eur J Biochem 206: 503–510

    Article  CAS  Google Scholar 

  • Kröger A, Dorre E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589: 118–136

    Article  Google Scholar 

  • Kröger A, Schröder I, Krems B, Klimmek O (1990) Phosphorylative electron transport without quinone. In: Hauska G, Thauer RK (eds) The molecular basis of bacterial metabolism. Springer, Berlin Heidelberg New York, pp 128–133

    Chapter  Google Scholar 

  • Kröger A, Geisler V, Lemma E, Theis F, Lenger R (1992) Bacterial fumarate respiration. Arch Microbiol 158: 311–314

    Article  Google Scholar 

  • Le Faou A, Rajagopal BS, Daniels L, Fauque G (1990) Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol Rev 75: 351–382

    Article  Google Scholar 

  • Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144: 147–150

    Article  CAS  Google Scholar 

  • Malik B, Su WW, Wald HL, Blumentals II, Kelly RM (1988) Growth and gas production by the hyperthermophilic archaebactrium Pyrococcus furiosus. Biotechn Bioeng 32: 438–444

    Article  Google Scholar 

  • Mell H, Wellnitz C, Kröger A (1986) The electrochemical proton potential and the proton/electron ratio of the electron transport with fumarate in Wolinella succinogenes. Biochim Biophys Acta 852: 212–221

    Article  CAS  Google Scholar 

  • Müller A, Diemann E (1987) Polysulphide complexes of metals. Adv Inorg Chem 31: 89–122

    Article  Google Scholar 

  • Neuner A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153: 205–207

    Article  Google Scholar 

  • Paulsen J (1987) ATP-getriebene Succinatoxidation im Katabolismus von Desulfuromonas acetoxidans. Doctoral thesis, Philipps-Universität Marburg

  • Paulsen J, Kröger A, Thauer RK (1986) ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch Microbiol 144: 78–83

    Article  CAS  Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110: 3–12

    Article  CAS  Google Scholar 

  • Schäfer T, Schönheit P (1992) Matose fermentation to acetate. CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158: 188–202

    Article  Google Scholar 

  • Schmitz RA, Bonch-Osmolovskaya EA, Thauer RK (1990) Different mechanisms of acetate activation in Desulfurella acetivorans and Desulfuromonas acetoxidans. Arch Microbiol 154: 274–279

    Article  CAS  Google Scholar 

  • Schröder I, Kröger A, Macy JM (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes. Arch Microbiol 149: 572–579

    Article  Google Scholar 

  • Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158: 287–293

    Article  CAS  Google Scholar 

  • Schwarzenbach G, Fischer A (1960) Die Acidität der Sulfane und die Zusammensetzung wässeriger Polysulfidlösungen. Helv Chim Acta 43: 1365–1388

    Article  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov. and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfurmetabolizing archaebacteria. Int J Syst Bacteriol 36: 559–564

    Article  Google Scholar 

  • Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305: 309–311

    Article  CAS  Google Scholar 

  • Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol VIII. Academic Press, Orlando, pp 85–165

    Google Scholar 

  • Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4: 535–551

    Article  CAS  Google Scholar 

  • Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75: 117–124

    Article  Google Scholar 

  • Steudel R, Holdt G, Göbel T, Hazeu W (1987) Chromatographische Trennung höherer Polythionate SnO 2-6 (n=3...22) und deren Nachweis in Kulturen von Thiobacillus ferrooxidans; molekulare Zusammensetzung bakterieller Schwefelausscheidungen. Angew Chem 99: 143–146

    Article  CAS  Google Scholar 

  • Teder A (1971) The quilibrium between elementary sulfur and aqueous polysulfide solutions. Acta Chem Scand 25: 1722–1728

    Article  CAS  Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43: 43–67

    Article  CAS  Google Scholar 

  • Wloczyk C, Kröger A, Göbel T, Holdt G, Steudel R (1989) The electrochemical proton potential generated by the sulphur respiration of Wolinella succinogenes. Arch Microbiol 152: 600–605

    Article  CAS  Google Scholar 

  • Wolfe RS, Pfennig N (1977) Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium. Appl Environ Microbiol 33: 427–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zentralbl Bakt Hyg, I Abt Orig C 2: 205–227

    CAS  Google Scholar 

  • Zillig W, Stetter WO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Holz I, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfurrespiring Thermoproteales. Zentralbl Bakt Hyg, I Abt Orig C3: 304–317

    CAS  Google Scholar 

  • Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4: 79–87

    Article  CAS  Google Scholar 

  • Zillig W, Yeats S, Holz I, Böch A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8: 197–203

    Article  CAS  Google Scholar 

  • Zillig W, Holz I, Klenk HP, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987) Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst Appl Microbiol 9: 62–70

    Article  CAS  Google Scholar 

  • Zöphel A, Kennedy MC, Beinert ZH, Kroneck PMH (1988) Investigations on microbial sulfur respiration. 1. Activation and reduction of elemental sulfur in several strains of eubacteria. Arch Microbiol 150: 72–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauder, R., Kröger, A. Bacterial sulphur respiration. Arch. Microbiol. 159, 491–497 (1993). https://doi.org/10.1007/BF00249025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249025

Key words

Navigation