Skip to main content
Log in

The electron transport system of Alcaligenes eutrophus H16

II. Respiratory activities and effect of specific inhibitors

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In a previous work (Kömen et al. 1991) it has been concluded that membrane fragments isolated from autotrophically grown Alcaligenes eutrophus H16 contain several iron-sulphur centres along with haems of a-, b-, c-, and d-type. These redox components have been proposed to be part of a branched respiratory chain leading to multiple membrane bound oxidases. Here, some of the respiratory activities catalyzed by membrane fragments from wild type cells of A. eutrophus (H16) and, for comparison, Paracoccus denitrificans, have been investigated through the use of electron transport inhibitors. Cyanide (CN-) titration curves indicated that in A. eutrophus H16 oxidation of succinate and H2 preferentially proceeds via the cytochrome c oxidase(s) branch (I 50=2 · 10-5 M) whereas the NADH dependent respiration started being inhibited at higher CN- concentrations (I 50=5 · 10-4 M). In membranes isolated from both, cells harvested at late growth-phase (OD 12) and from a mutant deficient in cytochrome c oxidase activity (A. eutrophus RK1), respiration was insensitive to low CN- concentrations (< 10-4 M), and it was sustained by the high catalytic activities of two quinol oxidases. These alternative oxidases of b- (formally o-) and d-type showed different sensitivities to KCN (I 50=10-3 M and 10-2 M, respectively). Interestingly, the cytochrome c oxidase(s) dependent respiration of H16 membranes was insensitive to antimycin A but largely inhibited by myxothiazol (10-6 M). This, and previous work (Kömen et al. 1991), suggest that although the respiratory chain of A. eutrophus is endowed with a putative bc 1 complex, its biochemical nature and role in respiration of this organism are apparently different from those of P. denitrificans. The peculiarity of the respiratory chain of A. eutrophus is confirmed by the rotenone insensitivity of the NADH oxidation in both protoplasts and membrane fragments from wild type and soluble hydrogenase deficient cells (HF14 and HF160). A tentative model of the respiratory chain of autotrophically grown A. eutrophus is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTAB:

Cetyltrimethylammonium bromide

cytochrome c-551:

number: wavelength in nm; cytochrome c 270, number: mid-point potential in mV

DCIP:

2,6-dichlorophenol-indophenol

DMSO:

dimethyl sulfoxide

E m, 7 :

mid-point potential of an oxidation-reduction couple at pH 7.0

I 50 :

concentration of the inhibitor at which 50% inhibition of the activity is observed

KP-buffer:

potassium phosphate-buffer

OD:

optical density at 436 nm, 1 cm light path

PMS:

phenazine methosulfate

Q:

ubiquinone

Qi :

Q-reducing side of the bc 1 complex

Qo :

Q-oxidizing side of the bc 1 complex

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

References

  • Ackrell BAC, Kearney EB, Singer TP (1978) Mammalian succinate dehydrogenase. Methods Enzymol 53:466–483

    Article  PubMed  CAS  Google Scholar 

  • Beatrice MC, Chappell JB (1979) The respiratory chain of Alcaligenes eutrophus H16. Biochem J 178:15–22

    PubMed  CAS  Google Scholar 

  • Dooijewaard G, Slater EC (1976a) Steady-state kinetics of high molecular weight (type-I) NADH dehydrogenase. Biochim Biophys Acta 440:1–15

    Article  PubMed  CAS  Google Scholar 

  • Dooijewaard G, Slater EC (1976b) Steady-state kinetics of low molecular weight (type-II) NADH dehydrogenase. Biochim Biophys Acta 440:16–35

    Article  PubMed  CAS  Google Scholar 

  • Dry JB, Moore AL, Day DA, Wiskich JT (1989) Regulation of alternative pathway activity in plant mitochondria: Nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys 273:148–157

    Article  PubMed  CAS  Google Scholar 

  • Harmon HJ, Hall JD, Crane FL (1974) Structure of mitochondrial christae membranes. Biochim Biophys Acta 344:119–155

    PubMed  CAS  Google Scholar 

  • Hata-Tanaka A, Matsuura K, Itoh S, Anraku Y (1987) Electron flow and heme-heme interaction between cytochromes b-558, b-595 and d in a terminal oxidase in Escherichia coli. Biochim Biophys Acta 893:289–295

    Article  PubMed  CAS  Google Scholar 

  • Jagow G von, Ljungdahl PO, Graf P, Onishi T, Trumpower BL (1984) An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc 1 complex. J Biol Chem 259: 6318–6326

    Google Scholar 

  • Keilin D (1966) The history of cell respiration and cytochrome. Cambridge University Press, Cambridge

    Google Scholar 

  • King MT, Drews G (1973) The function and localization of ubiquinone in the NADH-succinate-oxidase system of Rhodopseudomonas palustris. Biochim Biophys Acta 305:230–248

    Article  PubMed  CAS  Google Scholar 

  • Kömen R, Zannoni D, Ingledew WJ, Schmidt K (1991) The electron transport system of Alcaligenes eutrophus H16. I. Spectroscopic and thermodynamic properties. Arch Microbiol 155:382–390

    Article  Google Scholar 

  • Lorence RM, Koland JG, Gennis RB (1986) Coulometric and spectroscopic analysis of the purified cytochrome d complex in Escherichia coli. Evidence for the identification of “cytochrome a 1” as cytochrome b-595. Biochemistry 25:2314–2321

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Marrs B, Gest H (1973) Genetic mutations affecting the respiratory electron transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 114:1045–1051

    PubMed  CAS  Google Scholar 

  • Meijer EM, Wever R, Stouthamer AH (1977) The role of iron-sulfur center 2 in electron transport and energy conservation in the NADH-ubiquinone segment of the respiratory chain in Paracoccus denitrificans. Eur J Biochem 81:267–275

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt SW, Yang X, Trumpower BL, Onishi T (1987) Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation-reduction status on the Rieske iron-sulfur protein in the three-subunit ubiquinol-cytochrome c oxido-reductase of Paracoccus denitrificans. J Biol Chem 262:8702–8706

    PubMed  CAS  Google Scholar 

  • Miller MJ (1985) The cytochrome d complex is a coupling site in the aerobic respiration chain of Escherichia coli. J Biol Chem 260:14003–14008

    PubMed  CAS  Google Scholar 

  • Mitchell P (1975) Proton motive redox mechanism of the b/c complex in the respiratory chain: proton motive ubiquinone cycle. FEBS Lett 56:1–6

    Article  PubMed  CAS  Google Scholar 

  • Moore AL, Dry IB, Wiskitch JT (1988) Measurement of the redox state of the ubiquinone pool in plant mitochondria. FEBS Lett 235:76–80

    Article  CAS  Google Scholar 

  • Onishi T (1973) Mechanism of electron transport and energy conservation in the site I region of the respiratory chain. Biochim Biophys Acta 301:105–128

    PubMed  CAS  Google Scholar 

  • Onishi T, Meinhardt SW, Matsushita K (1987) Studies of bacterial NADH-ubiquinone (or menaquinone) oxidoreductase systems. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems. Molecular biology and bioenergetics. Plenum Press, New York, pp 443–450

    Google Scholar 

  • Poole RK, Williams HD (1987) Proposal that the function of the membrane-bound a 1-like haemoprotein (cytochrome b 595) in Escherichia coli is a direct electron donation to cytochrome d. FEBS Lett 217:49–52

    Article  PubMed  CAS  Google Scholar 

  • Porte F, Vignais PM (1980) Electron transport chain and energy transduction in Paracoccus denitrificans under autotrophic growth conditions. Arch Microbiol 127:1–10

    Article  CAS  Google Scholar 

  • Puustinen A, Finel M, Virkki M, Wikström M (1989) Cytochrome o (bo) is a proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Lett 249:163–167

    Article  PubMed  CAS  Google Scholar 

  • Rich P (1984) Electron and proton transfer through quinones and cytochrome bc 1 complexes. Biochim Biophys Acta 768:53–79

    PubMed  CAS  Google Scholar 

  • Salerno JC, Bolgiano B, Poole RK, Gennis RB, Ingledew WJ (1990) Heme-copper and heme-heme interactions in the cytochrome bo-containing quinol oxidase of Escherichia coli. J Biol Chem 265:4364–4368

    PubMed  CAS  Google Scholar 

  • Schink B, Schlegel HG (1978) Hydrogen metabolism in aerobic hydrogen oxidizing bacteria. Biochimie 60:279–305

    Google Scholar 

  • Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452:66–80

    PubMed  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983a) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791

    Article  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983b) Vector plasmids for in vivo manipulation of gram-negative bacteria. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin Heidelberg New York, pp 98–106

    Google Scholar 

  • Stouthamer AH (1980) Bioenergetic studies on Paracoccus denitrificans. Trends Biochem Sci 5:164–166

    Article  CAS  Google Scholar 

  • Venturoli G, Fernández-Velasco JG, Crofts AR, Melandri BA (1987) Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome c 2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides. Biochim Biophys Acta 851:340–352

    Google Scholar 

  • Williams HD, Poole RK (1987) The cytochromes of Acetobacter pasteurianus NCIB 6428. Evidence of a role for a cytochrome a 1-like haemoprotein in electron transfer to cytochrome oxidase a. J Gen Microbiol 133:2461–2472

    CAS  Google Scholar 

  • Zannoni D (1985) Mefloquine: an antimalarial drug interacting with the b/c region of bacterial respiratory chains. FEBS Lett 183:340–344

    Article  CAS  Google Scholar 

  • Zannoni D (1987) The interplay between photosynthesis and respiration in facultative anoxygenic phototrophic bacteria. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems. Molecular biology and bioenergetics. Plenum Press, New York, pp 575–583

    Google Scholar 

  • Zannoni D (1989) The respiratory chains of pathogenic pseudomonads. Biochim Biophys Acta 975:299–316

    PubMed  CAS  Google Scholar 

  • Zannoni D, Moore AL (1990) Measurements of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Lett 271:123–127

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kömen, R., Zannoni, D. & Schmidt, K. The electron transport system of Alcaligenes eutrophus H16. Arch. Microbiol. 155, 436–443 (1991). https://doi.org/10.1007/BF00244958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00244958

Key words

Navigation