Skip to main content
Log in

Coxal hair plates in spiders: physiology, fine structure, and specific central projections

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Coxal hair-plate sensilla in the spider Cupiennius salei are described with respect to their innervation, central projection pattern, electrical response to mechanical stimulation, and putative behavioral function.

  1. 1.

    Hair plates, each comprising 25–70 hairs, are situated on the ventrolateral leg coxae close to the prosomal joint; during coxal movements they are deflected by the bulging joint membrane. Each plate hair is innervated by one sensory cell.

  2. 2.

    Threshold sensitivity lies at 0.5° to 1° of hair deflection. Only distalward deflection excites. During maintained deflections the spike rate declines slowly. These hairs differ from hair sensilla of insects in that we measure no ‘standing potential’, nor do we measure a ‘receptor potential’ accompanying a mechanical stimulus.

  3. 3.

    The central projection areas of both hair plates are limited to neuropil of the ipsilateral neuromere.

  4. 4.

    Natural stimulus situation and the spike response to maintained deflection suggest that these hairs are used in proprioception and graviception. Yet behavioral changes following selective hair-plate ablations are not very pronounced. Unilateral removal of hair-plates produced significant increases in average body height in 7 of 10 animals, while the angular orientation of the long body axis with respect to gravity remained unchanged after hair-plate removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNS :

central nervous system

TEP :

transepithelial potential difference

References

  • Babu KS, Barth FG (1989) Central nervous projections of mechanoreceptors in the spider Cupiennius salei Keys. Cell Tissue Res 258:69–82

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363

    Google Scholar 

  • Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch 112:212–246

    Google Scholar 

  • Barth FG (1985) Slit sensilla and the measurement of cuticular strains. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 162–188

    Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Studies of brain function, vol. 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bohnenberger J (1981) Matched transfer characteristics of single units in a compound slit sense organ. J Comp Physiol 142:391–402

    Google Scholar 

  • Eckweiler W, Seyfarth E-A (1988) Tactile hairs and the adjustment of body height in wandering spiders: behavior, leg reflexes, and afferent projections in the leg ganglia. J Comp Physiol A 162:611–621

    Google Scholar 

  • Eckweiler W, Hammer K, Seyfarth E-A (1989) Long, smooth hair sensilla on the spider leg coxa: sensory physiology, central projection pattern, and proprioceptive function (Arachnida, Araneida). Zoomorphology 109:97–102

    Google Scholar 

  • Foelix RF (1985) Mechano- and chemoreceptive sensilla. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 118–137

    Google Scholar 

  • French AS (1988) Transduction mechanisms of mechanosensilla. Annu Rev Entomol 33:39–58

    Google Scholar 

  • Gaffal KP, Theiss J (1978) The tibial thread-hairs of Acheta domesticus L. (Saltatoria, Gryllidae). The dependence of stimulus transmission and mechanical properties on the anatomical characteristics of the socket apparatus. Zoomorphologie 90:41–51

    Google Scholar 

  • Gnatzy W (1982) ‘Campaniforme’ Spaltsinnesorgane auf den Beinen von Weberknechten (Opiliones, Arachnida). Verh Dtsch Zool Ges 75:248

    Google Scholar 

  • Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cereal filiform hairs of Gryllus. Cell Tissue Res 13:441–463

    Google Scholar 

  • Gnatzy W, Mohren W, Steinbrecht RA (1984) Pheromone receptors in Bombyx mori and Antherae pernyi. II. Morphometric analysis. Cell Tissue Res 25:35–42

    Google Scholar 

  • Grünert U, Gnatzy W (1987) K + and Ca++ in the receptor lymph of arthropod cuticular mechanoreceptors. J Comp Physiol A 161:329–333

    Google Scholar 

  • Hackney CM, Altman JS (1982) Cobalt mapping of the nervous system: how to avoid artifacts. J Neurobiol 13:403–411

    Google Scholar 

  • Hergenröder R, Barth FG (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys.). J Comp Physiol 152:347–358

    Google Scholar 

  • Kaestner A (1924) Beiträge zur Kenntnis der Lokomotion der Arachniden. I. Araneae. Arch Naturgesch 90A:1–19

    Google Scholar 

  • Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z Vergl Physiol 45:475–569

    Google Scholar 

  • McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 6. Pergamon Press, Oxford, pp 71–132

    Google Scholar 

  • Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jb Syst 91:1–90

    Google Scholar 

  • Milde JJ, Seyfarth E-A (1988) Tactile hairs and leg reflexes in wandering spiders: physiological and anatomical correlates of reflex activity in the leg ganglia. J Comp Physiol A 162:623–631

    Google Scholar 

  • Pringle JWS (1938) Proprioception in insects. III. The function of the hair sensilla at the joints. J Exp Biol 15:467–473

    Google Scholar 

  • Reissland A, Görner P (1985) Trichobothria. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 138–161

    Google Scholar 

  • Schmidt JM, Smith JJB (1987) The external sensory morphology of the legs and hairplate system of female Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). Proc R Soc Lond B 232:323–366

    Google Scholar 

  • Seyfarth E-A (1980) Daily patterns of locomotor activity in a wandering spider. Physiol Entomol 5:199–206

    Google Scholar 

  • Seyfarth E-A (1985) Spider proprioception: receptors, reflexes, and control of locomotion. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 230–248

    Google Scholar 

  • Seyfarth E-A, Hammer K (1988) Central projections of cuticular mechanoreceptors in spiders: the specificity of proximal leg sensilla. In: Haupt J (ed) Comptes rendus du XIème colloque d'arachnologie. TUB-Dokumentation 38. Berlin, pp 23–28

  • Seyfarth E-A, Bohnenberger J, Thorson J (1982) Electrical and mechanical stimulation of a spider slit sensillum: outward current excites. J Comp Physiol 147:423–432

    Google Scholar 

  • Seyfarth E-A, Eckweiler W, Hammer K (1985) Proprioceptors and sensory nerves in the legs of a spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 105:190–196

    Google Scholar 

  • Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183:161–172

    Google Scholar 

  • Thurm U (1962) Ableitung der Rezeptorpotentiale und Nervenimpulse einzelner Cuticula-Sensillen bei Insekten. Z Naturforsch 17:285–286

    Google Scholar 

  • Thurm U (1963) Die Beziehungen zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeld-Sensillen von Bienen. Z Vergl Physiol 46:351–382

    Google Scholar 

  • Thurm U (1984) Beiträge der Ultrastrukturforschung zur Aufklärung sensorischer Mechanismen. Verh Dtsch Zool Ges 77:89–103

    Google Scholar 

  • Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith D (eds) Insect biology in the future. Academic Press, New York, pp 735–763

    Google Scholar 

  • Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods. I. Comparative data. J Comp Physiol 134:119–130

    Google Scholar 

  • Tyrer NM, Bacon JP, Davies CA (1979) Sensory projections from the wind-sensitive head hairs of the locust Schistocerca gregaria. Cell Tissue Res 203:79–92

    Google Scholar 

  • Vedel JP (1986) Morphology and physiology of a hair plate sensory organ located on the antenna of the rock lobster Palinurus vulgaris. J Neurobiol 17:65–76

    Google Scholar 

  • Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250

    Google Scholar 

  • Wong RKS, Pearson KG (1976) Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. J Exp Biol 64:233–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyfarth, EA., Gnatzy, W. & Hammer, K. Coxal hair plates in spiders: physiology, fine structure, and specific central projections. J Comp Physiol A 166, 633–642 (1990). https://doi.org/10.1007/BF00240013

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240013

Key words

Navigation