Skip to main content
Log in

Circadian organization in the ruin lizard Podarcis sicula: the role of the suprachiasmatic nuclei of the hypothalamus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The effects of electrolytic lesions to the suprachiasmatic nuclei of the hypothalamus (SCN) on circadian rhythms of locomotor activity were examined in ruin lizards Podarcis sicula maintained in constant darkness and constant temperature (29°C). All lizards (N=15) in which the lesion damaged 80% or more of the SCN became behaviorally arrhythmic. On the contrary, locomotor rhythms persisted in all cases (N=11) when the SCN remained intact and lesions were confined to neighbouring regions of the preoptic area. Taken together with previous work which demonstrates that the pineal and the retinae are not essential for the persistence of circadian locomotor rhythmicity in Podarcis sicula and with recent evidence showing the homology between the SCN of lizards and those of mammals the present results strongly support the view that the SCN of Podarcis sicula contain the primary pacemaker(s) for locomotor rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DD :

constant darkness

LL :

constant light

SCN :

suprachiasmatic nuclei of the hypothalamus

PH :

nucleus periventricularis hypothalami

OC :

optic chiasm

teα :

length of circadian activity

τ :

freerunning circadian period

References

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25: 11–28

    Google Scholar 

  • Casini G, Petrini P, Foà A, Bagnoli P (1993) Pattern of organization of primary visual pathways in the European lizard Podarcis sicula Rafinesque. J Hirnforsch 34: 361–374

    Google Scholar 

  • Cassone VM, Brooks DS (1991) Sites of melatonin action in the brain of the house sparrow, Passer domesticus. J Exp Zool 260: 302–309

    Google Scholar 

  • Cassone VM, Menaker M (1984) Is the avian circadian system a neuroendocrine loop? J Exp Zool 232: 539–549

    Google Scholar 

  • Chiba A, Kikuchi M, Aoki K (1993) The effects of pinealectomy and blinding on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. J Comp Physiol A 172: 683–691

    Google Scholar 

  • Daan S, Berde C (1978) Two coupled oscillators: simulation of the circadian pacemaker in mammalian activity rhythms. J Theor Biol 70: 297–313

    Google Scholar 

  • DeCoursey PJ, Buggy J (1989) Circadian rhythmicity after neural transplant to hamster third ventricle: specificity of suprachiasmatic nuclei. Brain Res 500: 263–275

    Google Scholar 

  • Ebihara S, Kawamura K (1981) The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow, Padda oryzivora. J Comp Physiol 141: 207–214

    Google Scholar 

  • Ebihara S, Uchiyama K, Oshima I (1984) Circadian organization in the pigeon Columba livia: the role of the pineal organ and the eye. J Comp Physiol A 154: 59–69

    Google Scholar 

  • Enright JT (1965) The search for rhythmicity in biological time-series. J Theor Biol 8: 426–468

    Google Scholar 

  • Foà A (1991) The role of the pineal and the retinae in the expression of circadian locomotor rhythmicity in the ruin lizard, Podarcis sicula. J Comp Physiol A 169: 201–207

    Google Scholar 

  • Foà A, Janik D, Minutini L (1992a) Circadian rhythms of plasma melatonin in the ruin lizard Podarcis sicula: effetcs of pinealectomy. J Pineal Res 12: 109–113

    Google Scholar 

  • Foà A, Minutini L, Innocenti A (1992b) Melatonin: a coupling device between oscillators in the circadian system of the ruin lizard Podarcis sicula. Comp Biochem Physiol 103A: 719–723

    Google Scholar 

  • Foà A, Flamini M, Innocenti A, Minutini L, Monteforti G (1993) The role of extraretinal photoreception in the circadian system of the ruin lizard Podarcis sicula. Comp Biochem Physiol 105A: 223–230

    Google Scholar 

  • Foà A, Monteforti G, Minutini L, Innocenti A, Quaglieri C, Flamini M (1994) Seasonal changes of locomotor activity patterns in ruin lizards Podarcis sicula. I. Endogenous control by the circadian system. Behav Ecol Sociobiol 34: 227–274

    Google Scholar 

  • Foster RG, Garcia-Fernandez JM, Provencio I, DeGrip WJ (1993) Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis. J Comp Physiol A 172: 33–45

    Google Scholar 

  • Garg SK, Sundaraj BI (1986) Role of the pineal in the regulation of some aspects of circadian rhythmicity in the catfish, Heteropneustes fossilis (Bloch). Chronobiologia 13: 1–11

    Google Scholar 

  • Gaston S, Menaker M (1968) Pineal function: the biological clock in the sparrow? Science 160: 1125–1127

    Google Scholar 

  • Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic slice. Brain Res 245: 189–200

    Google Scholar 

  • Greenberg N (1982) A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis. J Morphol 174: 217–236

    Google Scholar 

  • Innocenti A, Minutini L, Foà A (1994) Seasonal changes of locomotor activity patterns in ruin lizards Podarcis sicula. II. Involvement of the pineal. Behav Ecol Sociobiol 35: 27–32

    Google Scholar 

  • Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76: 5962–5966

    Google Scholar 

  • Janik DS, Menaker M (1990) Circadian locomotor rhythms in the desert iguana I. The role of the eyes and the pineal. J Comp Physiol A 166: 803–810

    Google Scholar 

  • Janik DS, Pickard GE, Menaker M (1990) Circadian locomotor rhythms in the desert iguana II. Effects of electrolytic lesions to the hypothalamus. J Comp Physiol A 166: 811–816

    Google Scholar 

  • Janik DS, Cassone VM, Pickard GE, Menaker M (1994) Retinohypothalamic projections and immunocytochemical analysis of the suprachiasmatic region of the desert iguana Dipsosaurus dorsalis. Cell Tissue Res 275: 399–406

    Google Scholar 

  • Lu J, Cassone VM (1993a) Pineal regulation of circadian rhythms of 2-deoxy[14C]glucose uptake and 2[125I]iodomelatonin binding in the visual system of the house sparrow, Passer domesticus. J Comp Physiol A 173: 765–774

    Google Scholar 

  • Lu J, Cassone VM (1993b) Daily melatonin administration synchronizes circadian patterns of brain metabolism and behavior in pinealectomized house sparrows, Passer domesticus. J Comp Physiol A 173: 775–782

    Google Scholar 

  • McArthur AJ, Gillette MU, Prosser RA (1991) Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res 565: 158–161

    Google Scholar 

  • Menaker M (1985) Eyes — the second (and third) pineal glands? Ciba Foundation Symposium 117. Pitman, London, pp 78–92

    Google Scholar 

  • Menaker M, Wisner S (1983) Temperature compensated circadian clock in the pineal of Anolis. Proc Natl Acad Sci USA 80: 6119–6121

    Google Scholar 

  • Minutini L, Innocenti A, Bertolucci C, Foà A (1994) Electrolytic lesions to the optic chiasm affect circadian locomotor rhythms in lizards. Neuroreport 5: 525–527

    Google Scholar 

  • Morgan PJ, Williams LM (1989) Central melatonin receptors: implications for the mode of action. Experientia 45: 955–965

    Google Scholar 

  • Morita Y, Tabata M, Uchida K, Samejima M (1992) Pineal-dependent locomotor activity of lamprey, Lampetra japonica, measured in relation to LD cycle and circadian rhythmicity. J Comp Physiol A 171: 555–562

    Google Scholar 

  • Murakami N, Takamure M, Takahashi K, Utunomiya K, Kuroda H, Etoh T (1991) Long-term cultured neurons from rat suprachiasmatic nucleus retain the capacity for circadian oscillation of vasopressin release. Brain Res 545: 347–350

    Google Scholar 

  • Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol 106: 333–355

    Google Scholar 

  • Ralph M, Foster G, Davis F, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975–978

    CAS  PubMed  Google Scholar 

  • Rivkees SA, Cassone VM, Weaver DR, Reppert SM (1989) Melatonin receptors in chick brain: characterization and localization. Endocrinology 125: 363–368

    Google Scholar 

  • Rusak B (1977) The role of the suprachiasmatic nuclei in the generation of circadian rhythm in the golden hamster, Mesocricetus auratus. J Comp Physiol 118: 145–164

    Google Scholar 

  • Rusak B (1982) Physiological models of the rodent circadian system. In: Aschoff J, Daan S, Groos GA (eds) Vertebrate circadian systems. Springer, Berlin Heidelberg New York, pp 67–72

    Google Scholar 

  • Schwartz WL, Davidsen LC, Smith CB (1980) In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. J Comp Neurol 189: 157–167

    Google Scholar 

  • Simpson SM, Follett BK (1981) Pineal and hypothalamic pacemakers: their role in regulating circadian rhythmicity in Japanese quail. J Comp Physiol 144: 381–389

    Google Scholar 

  • Sokolove PG, Bushell WN (1978) The chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 72: 131–160

    CAS  PubMed  Google Scholar 

  • Takahashi JS, Menaker M (1982) Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J Neurosci 2: 815–828

    Google Scholar 

  • Takahashi JS, Hamm H, Menaker M (1980) Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc Natl Acad Sci USA 77: 2319–2322

    Google Scholar 

  • Underwood H (1973) Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizard. J Comp Physiol 83: 187–222

    Google Scholar 

  • Underwood H (1979) Melatonin affects circadian rhythmicity in lizards. J Comp Physiol 130: 317–323

    Google Scholar 

  • Underwood H (1981) Circadian organization in the lizard, Sceloporus occidentalis: the effects of blinding, pinealectomy and melatonin. J Comp Physiol 141: 537–547

    Google Scholar 

  • Underwood H (1983) Circadian organization in the lizard, Anolis carolinensis: a multioscillator system. J Comp Physiol 152: 265–271

    Google Scholar 

  • Underwood H (1990) The pineal and melatonin: regulators of circadian function in lower vertebrates. Experientia 46: 120–128

    Google Scholar 

  • Underwood H (1992) Endogenous rhythms. In: Gans C (ed) Biology of Reptilia. Univ Chicago Press, Chicago London, Vol. 18, pp 229–297

    Google Scholar 

  • Underwood H, Siopes T (1984) Circadian organization in Japanese quail. J Exp Zool 232: 557–566

    Google Scholar 

  • Underwood H, Barrett RK, Siopes T (1990) The quail's eye: a biological clock. J Biol Rhythms 5: 257–265

    Google Scholar 

  • Vanecek J, Pavlik A, Illnerova H (1987) Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res 435: 477–479

    Google Scholar 

  • Weigand SJ, Gash DM (1988) Organization and efferent connection of transplanted suprachiasmatic nuclei. J Comp Neurol 267: 562–579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minutini, L., Innocenti, A., Bertolucci, C. et al. Circadian organization in the ruin lizard Podarcis sicula: the role of the suprachiasmatic nuclei of the hypothalamus. J Comp Physiol A 176, 281–288 (1995). https://doi.org/10.1007/BF00239930

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239930

Key words

Navigation