Skip to main content

Anatomical Methods to Study the Suprachiasmatic Nucleus

  • Protocol
  • First Online:
Circadian Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2482))

  • 1132 Accesses

Abstract

The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker. In order to examine mechanisms by which it keeps time, entrains to periodic environmental signals (zeitgebers), and regulates subordinate oscillators elsewhere in the brain and in the periphery, a variety of molecular methods have been applied. Multiple label immunocytochemistry and in situ hybridization provide anatomical insights that complement physiological approaches (such as ex vivo electrophysiology and luminometry) widely used to study the SCN.

The anatomical methods require interpretation of data gathered from groups of individual animals sacrificed at different time points. This imposes constraints on the design of the experiments that aim to observe changes that occur with circadian phase in free-running conditions. It is essential in such experiments to account for differences in the periods of the subjects. Nevertheless, it is possible to resolve intracellular colocalization and regional expression of functionally important transcripts and/or their peptide products that serve as neuromodulators or neurotransmitters. Armed with these tools and others, understanding of the mechanisms by which the hypothalamic pacemaker regulates circadian function is progressing apace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69:1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci 13:1065–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lehman MN, Silver R, Gladstone WR, Khan RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7:1626–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  CAS  PubMed  Google Scholar 

  5. Sujino M, Masumoto K, Yamaguchi S, van der Horst GT, Okamura H, Inouye SI (2003) Suprachiasmatic nucelus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13:664–668

    Article  CAS  PubMed  Google Scholar 

  6. Yamazaki S, Takahashi JS (2005) Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393:288–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tominaga-Yoshino K, Ueyama T, Okamura H (2007) Suprachiasmatic nucleus cultures that maintain rhythmic properties in vitro. In: Rosario E (ed) Methods in molecular biology, vol 367. Humana Press Inc, Totowa, NJ, pp 481–492

    Google Scholar 

  8. De la Iglesia HO (2007) In situ hybridization of suprachiasmatic nucleus slices. In: Rosario E (ed) Methods in molecular biology, vol 367. Humana Press Inc, Totowa, NJ, pp 513–531

    Google Scholar 

  9. Llamosas MM (2007) Immunocytochemistry on suprachiasmatic nucleus slices. In: Rosario E (ed) Methods in molecular biology, vol 367. Humana Press Inc, Totowa, NJ, pp 549–560

    Google Scholar 

  10. Meijer JH, Michel S (2015) Neurophysiological analysis of the suprachiasmatic nucleus: a challenge at multiple levels. Methods Enzymol 552:75–102

    Article  CAS  PubMed  Google Scholar 

  11. Mei L, Zhan C, Zhang EE (2018) In vivo monitoring of circadian clock gene expression in the mouse suprachiasmatic nucleus using fluorescence reporters. J Vis Exp 137:e56765. https://doi.org/10.3791/56765

    Article  CAS  Google Scholar 

  12. Shan Y, Abel JH, Li Y, Izumo M, Cox KH, Jeong B, Yoo S-H, Olson DP, Doyle FJ III, Takahashi JS (2020) Dual-color single-cell imaging of the suprachiasmatic nucleus reveals a circadian role in network synchrony. Neuron 108:1–16

    Article  CAS  Google Scholar 

  13. Martin-Burgos B, Wang W, William I, Tir S, Mohammad I, Javed R, Smith S, Cui Y, Smith CB, van der Vinne V, Molyneux PC, Miller SC, Weaver DR, Leise TL, Harrington ME (2020) Methods for detecting PER2:LUCIFERASE bioluminescence rhythms in freely moving mice. bioRxiv. https://doi.org/10.1101/2020.08.24.264531

  14. Evans JA, Welsh DK, Davidson AJ (2021) Collection of mouse brain slices for bioluminescence imaging of circadian clock networks. In: Brown SA (ed) Circadian clocks, Methods in molecular biology, vol 2130. Humana, New York. https://doi.org/10.1007/978-1-0716-0381-9_21

    Chapter  Google Scholar 

  15. Gillette MU (2022) Electrophysiological methods to study the SCN. In: Solanas G, Welz P (eds) Circadian regulation. Springer, New York

    Google Scholar 

  16. Romijn HJ, Slutter AA, Pool C, Wortel J, Buijs RM (1996) Differences in colocalization between Fos and PHI, GRP, VIP and VP in neurons of the rat suprachiasmatic nucleus after a light stimulus during the phase delay versus the phase advance period of the night. J Comp Neurol 372:1–8

    Article  CAS  PubMed  Google Scholar 

  17. Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization, and efferent projections. Brain Res 916:172–191

    Article  CAS  PubMed  Google Scholar 

  18. Morin LP (2013) Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243:4–20

    Article  PubMed  Google Scholar 

  19. Atkins N Jr, Ren S, Hatche N, Burgoon PW, Mitchell JW, Sweedler JV, Gillette MU (2018) Functional peptidomics: stimulus- and time-of-day-specific release in the mammalian circadian clock. ACS Chem Neurosci 9:2001–2008

    Article  CAS  PubMed  Google Scholar 

  20. Albers HW, Walton JC, Gamble KL, McNeill JK, Hummer DL (2017) The dunamics of GABA signaling: revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neeuroendocrinol 44:35–82

    Article  CAS  Google Scholar 

  21. Abraham U, Prior JL, Granados-Fuentes D, Piwnica-Worms DR, Herzog ED (2005) Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro. J Neurosci 25:8620–8626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalsbeek A, Palm IF, LaFleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythm 21:458–469

    Article  CAS  Google Scholar 

  23. Nagano M, Adachi A, Nakahama K-I, Nakamura T, Tamada M, Meyer-Bernstein E, Sehgal A, Shigeyoshi Y (2003) An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 23:6141–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laing BT, Siemian JN, Sarsfield S, Aponte Y (2021) Fluorescence microendoxcopy for in vivo deep-brain imaging of neuronal circuits. J Neurosci Methods 348:109015. https://doi.org/10.1016/j.jneumeth.2020.109015

    Article  CAS  PubMed  Google Scholar 

  25. Varadarajan S, Tajiri M, Jain R, Holt R, Ahmed Q, LeSauter J, Silver R (2018) Connectome of the suprachiasmatic nucleus: new evidence of the core-shell relationship. eNeuro. https://doi.org/10.1523/ENEURO.0205-18.2018

  26. Manoogian ENC, Kumar A, Obed D, Bergan J, Bittman EL (2018) Suprachiasmatic function in a circadian period mutant: Duper alters light-induced activation of vasoactive intestinal peptide cells and PERIOD1 immunstaining. Eur J Neurosci 48:3319–3334

    Article  PubMed  PubMed Central  Google Scholar 

  27. LeSauter J, Lambert CM, Robotham MR, Model Z, Silver R, Weaver DR (2012) Antibodies for assessing circadian clock proteins in the rodent suprachiasmatic nucleus. PLoS One 7:e35938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng AH, Fung SW, Cheng H-YM (2019) Limitations of the Avp-IRES-Cre (JAX#023530) and VIP-IRES-Cre (JAX #010908) models for chronobiological investigations. J Biol Rhythm 34:634–644

    Article  CAS  Google Scholar 

  29. An S, Tsai C, Ronecker J, Bayly A, Herzog ED (2012) Spatiotemporal distribution of vasoactive intestinal polypeptide receptor 2 in mouse suprachiasmatic nucleus. J Comp Neurol 520:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duy PQ, Komal R, Richardson MES, Hahm KS, Fernandez DC, Hattar S (2020) Light has diverse spatiotemporal molecular changes in the muse suprachiasmatic nucleus. J Biol Rhythm 35:576–587

    Article  Google Scholar 

  31. Glickman G, Webb IC, Elliott JA, Baltazar RM, Reale M, Lehman MN, Gorman MR (2012) Photic sensitivity for circadian response to light varies with photoperiod. J Biol Rhythm 27:308–318

    Article  Google Scholar 

  32. Cohen R, Kronfeld-Schor N, Ramanathan C, Baumgras A, Smale L (2010) The substructure of the suprachiasmatic nucleus: similarities between nocturnal and diurnal spiny mice. Brain Behav Evol 75:9–22

    Article  PubMed  PubMed Central  Google Scholar 

  33. Antle MC, LeSauter J, Silver R (2005) Neurogenesis and ontogeny of specific cell phenotypes within the hamster suprachiasmatic nucleus. Dev Brain Res 157:8–18

    Article  CAS  Google Scholar 

  34. Hannibal J, Hundahl C, Fahrenkrug J, Rehfeld JF, Friss-Hansen L (2010) Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice. Eur J Neurosci 32:1006–1017

    Article  PubMed  Google Scholar 

  35. LeSauter J, Bhulyan T, Shimazoe T, Silver R (2009) Circadian trafficking of calbindin-ir in fibers of SCN neurons. J Biol Rhythm 24:488–496

    Article  CAS  Google Scholar 

  36. Hannibal J, Norn THB, Georg B, Fahrenkrug J (2019) Spatiotemporal expression pattern of PERIOD1 and PERIOD2 in the mouse SCN is dependent on VIP receptor 2 signaling. Eur J Neurosci 50:3115–3132

    Article  PubMed  Google Scholar 

  37. Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, Takahashi JS, Yanagisawa M (2015) Neuromedin S-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85:1086–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40:1457–1462

    Article  CAS  PubMed  Google Scholar 

  39. Shindler KS, Roth KA (1996) Double immunofluorescent staining using two unconjugated primary antisera raised in the same species. J Histochem Cytochem 44:1331–1335

    Article  CAS  PubMed  Google Scholar 

  40. Antle MC, Kriegsfeld LJ, Silver R (2005) Signaling within the master clock of the brain: localized activation of mitogen-activated protein kinase by gastrin-releasing peptide. J Neurosci 25:2447–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Toth ZE, Mezey E (2007) Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. J Histochem Cytochem 5:545–554

    Article  CAS  Google Scholar 

  42. Yamamoto S, Shigeyoshi Y, Ishida Y, Fukuyama T, Yamaguchi S, Yagita K, Moriya T, Shibata S, Takashima N, Okamura H (2001) Expression of the Per1 gene in the hamster: brain atlas and circadian characteristics in the suprachiasmatic nucleus. J Comp Neurol 430:518–532

    Article  CAS  PubMed  Google Scholar 

  43. Watts AG, Swanson LW (1989) Combination of in situ hybridization with immunohistochemistry and retrograde tract-tracing. In: Michael Conn P (ed) Methods in neurosciences, vol 1. Academic, New York, pp 127–136

    Google Scholar 

  44. Speel EJ, Ramaekers EC, Hopman AH (1995) Cytochemical detection systems for in situ hybridization and the combination with immunocytochemistry, ‘who is still afraid of red, green and blue?’. Histochem J 27:833–858

    CAS  PubMed  Google Scholar 

  45. Fettissov SO, Marsais F (1999) Combination of immunocytochemical and in situ hybridization methods to reveal tyrosine hydroxylase and vasopressin mRNAs in magnocellular neurons of obese Zucker rats. Brain Res Brain Res Protoc 4:36–43

    Article  Google Scholar 

  46. Moon IS, Cho S-J, Jin IN, Walikonis R (2007) A simple method for combined fluorescence in situ hybridization and immunocytochemistry. Mol Cells 24:76–82

    CAS  PubMed  Google Scholar 

  47. Watakabe A, Komatsu Y, Ohsawa S, Yamamori T (2010) Fluorescent in situ hybridization technique for cell type identification and characterization in the central nervous system. Methods 52:367–374

    Article  CAS  PubMed  Google Scholar 

  48. Mahoney CE, McKinley Brewer J, Bittman EL (2013) Central control of circadian phase in arousal-promoting neurons. PLoS One 8(6):e67173. https://doi.org/10.1371/journal.pone.0067173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Erben L, Buonanno A (2019) Multiple RNA sequences using emerging ultrasensitive fluorescent in situ hybridization techniques. Curr Protoc Neurosci 87:e63. https://doi.org/10.1002/cpns.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takahashi Y, Maynard KR, Tippani M, Jaffe AE, Martinowich K, Kleinman JE, Weinberger DR, Hyde TM (2021) Single molecular in situ hybridization reveals distinct localizations of schizophrenia risk-related transcripts SNX19 and AS3MT in human brain. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01046-9

  51. Bejugam PR, Das A, Panda AC (2020) Seeing is believing: visualizing circular RNAs. Non-coding RNA 6:45. https://doi.org/10.3390/nrcna6040045

    Article  CAS  PubMed Central  Google Scholar 

  52. Watson RE, Wiegand SJ, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7:155–159

    Article  CAS  PubMed  Google Scholar 

  53. Hoffman GE, Le WW, Sita LV (2008) The importance of titrating antibodies for immunocytochemical methods. Curr Protoc Neurosci 76:2.12.1–2.12.26

    Google Scholar 

  54. Lokshin M, LeSauter J, Silver R (2015) Selective distribution of retinal input to mouse SCN revealed in analysis of sagittal sections. J Biol Rhythm 30:251–257

    Article  Google Scholar 

  55. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saafield S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz WJ, Tavakoli-Nezhad T, Lambert CM, Weaver DR, de la Iglesia HO (2011) Distinct patterns of period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Proc Natl Acad Sci U S A 108:17219–17224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Slomianka L (2021) Basic quantitative morphological methods applied to the central nervous system. J Comp Neurol 529:694–756

    Article  PubMed  Google Scholar 

  58. Lee YY, Cai-Kayitmazbatir S, Francey LJ, Bahiru MS, Hayer KE, Wu G, Zeller MJ, Roberts R, Speers J, Koshalek J, Berres ME, Bittman EL, Hogenesch JB (2022) duper is a null mutation of Cryptochrome 1 in Syrian hamsters. Proc Natl Acad Sci (USA), in press

    Google Scholar 

Download references

Acknowledgments

Preparation of this chapter was facilitated by NIH RO1 HL138551 to Eric L. Bittman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Bittman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bittman, E.L. (2022). Anatomical Methods to Study the Suprachiasmatic Nucleus. In: Solanas, G., Welz, P.S. (eds) Circadian Regulation. Methods in Molecular Biology, vol 2482. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2249-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2249-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2248-3

  • Online ISBN: 978-1-0716-2249-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics