Skip to main content
Log in

Ontogenetic development of S-antigen- and rodopsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In Xenopus laevis Daud., the ontogenetic occurrence of two photoreceptor-specific proteins, S-antigen and rod-opsin, was investigated and correlated to the maturation of the neurohormonal effector system involved in melatonin-dependent color-change mechanisms. Tadpoles ranging from stage 12 to 57 (Nieuwkoop and Faber 1956) were fixed in Zamboni's or Bouin's solution. Frozen or paraffin sections of either total heads or dissected brains and eyes were prepared and treated with highly specific antisera against S-antigen and rod-opsin. In the retina, immunoreactive S-antigen and rod-opsin were first demonstrated in a few centrally located photoreceptors at stage 37/38. Photoreceptors of the peripheral (iridical) portions of the retina gradually became immunoreactive during further development. As in the retina, the first S-antigen-immunoreactive photoreceptors in the pineal complex appeared at stage 37/ 38. At this and all later stages investigated rod-opsin immunoreactivity was restricted to a few dot-like structures resembling developing pineal outer and inner segments. In most animals rod-opsin immunoreactivity was completely absent from the pineal complex. The analysis of retinal proteins with the immunoblotting technique (Western blot) revealed that the S-antigen antibody bound to a 48-kDa protein and the rod-opsin antibody to a 38-kDa protein. The body lightening reaction was determined with the aid of the melanophore index in larvae fixed in light or darkness, respectively. Aggregation of melanophore melanosomes in darkness (the melatonin-dependent primary chromatic response) first occurred at stage 37/38 when melanophores started to differentiate and became pigmented. These results indicate that in Xenopus laevis (i) the molecular mechanisms of photoreception develop simultaneously in retina and pineal complex; (ii) most pineal photoreceptors differ from retinal rods in that they contain immunoreactive S-antigen but essentially no immunoreactive rod-opsin; and (iii) the differentiation of phototransduction processes coincides with the onset of melatonin-dependent photoneuroendocrine regulation of color-change mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod J, Quay WB, Baker PC (1965) Enzymatic synthesis of the skin-lightening agent, melatonin, in amphibians. Nature 208:386

    Google Scholar 

  • Bagnara JT (1957) Hypophysectomy and the tail-darkening reaction in Xenopus. Proc Soc Exp Biol Med 94:572–575

    Google Scholar 

  • Bagnara JT (1960a) Pineal regulation of the body lightening reaction in amphibian larvae. Science 132:1481–1483

    Google Scholar 

  • Bagnara JT (1960b) Tail melanophores of Xenopus in normal development and regeneration. Biol Bull 118:1–8

    Google Scholar 

  • Bagnara JT (1963) The pineal and the body lightening reaction of larval amphibians. Gen Comp Endocrinol 3:86–100

    Google Scholar 

  • Bagnara JT (1965) Pineal regulation of body blanching in amphibian larvae. Prog Brain Res 10:489–506

    Google Scholar 

  • Baker BI, Rance TA (1983) Further observation on the distribution and properties of teleost melanin concentrating hormone. Gen Comp Endocrinol 50:423–431

    Google Scholar 

  • Baker PC (1965) Changing serotonin levels in developing Xenopus laevis. Acta Embryol Morphol Exp 8:197–204

    Google Scholar 

  • Baker PC (1966) Development of 5-hydroxytryptophan decarboxylase in the brain, eye and whole embryo of Xenopus laevis. Neuroendocrinology 1:257–264

    Google Scholar 

  • Baker PC (1969) Melatonin levels in developing Xenopus laevis. Comp Biochem Physiol 28:1387–1393

    Google Scholar 

  • Baker PC, Quay WB, Axelrod J (1965) Development of hydroxyindole-O-methyl transferase activity in eye and brain of the amphibian, Xenopus laevis. Life Sci 4:1981–1987

    Google Scholar 

  • Binkley S, Mosher K, Rubin F, White B (1988) Xenopus tadpole melanophores are controlled by dark and light and melatonin without influence of time of day. J Pineal Res 5:87–97

    Google Scholar 

  • Charlton HM (1964) Uptake of labelled precursors of melatonin by the epiphysis of Xenopus laevis. Nature 204:1093–1094

    Google Scholar 

  • Charlton HM (1966) The pineal gland and color change in Xenopus laevis Daudin. Gen Comp Endocrinol 7:384–397

    Google Scholar 

  • Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livingstone, Edinburgh, pp 79–125

    Google Scholar 

  • Dartnall HJA (1956) Further observations on the visual pigments of the clawed toad, Xenopus laevis. J Physiol 134:327–338

    Google Scholar 

  • Du Shane GP (1943) The embryology of vertebrate pigment cells. Part I. Amphibia. Q Rev Biol 18:109–127

    Google Scholar 

  • Eakin RM, Westfall JA (1959) Fine structure of the retina in the reptilian third eye. J Biophys Biochem Cytol 6:133–134

    Google Scholar 

  • Fingerman M (1965) Chromatophores. Physiol Rev 45:296–339

    Google Scholar 

  • Foster RG, Roberts A (1982) The pineal eye in Xenopus laevis embryos and larvae: a photoreceptor with direct excitatory effect on behaviour. J Comp Neurol 145:413–419

    Google Scholar 

  • Frisch K von (1911) Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflügers Arch 138:319–387

    Google Scholar 

  • Gern WA, Greenhouse SS (1988) Examination of in vitro melatonin secretion from the superfused trout (Salmo gairdneri) pineal organs maintained under dial illumination and continuous darkness. Gen Comp Endocrinol 71:163–174

    Google Scholar 

  • Grip W de (1985) Immunochemistry of rhodopsin. Prog Retinal Res 4:137–183

    Google Scholar 

  • Grip W de (1988) Recent chemical studies related to vision. Photochem Photobiol 48:799–810

    Google Scholar 

  • Haffner K von (1950) Über die progressive und regressive Entwicklung der Pinealblase (Parietalorgan) des Krallenfrosches (Xenopus laevis Daud.). Zool Anz [Suppl] 15:93–100

    Google Scholar 

  • Haffner K von (1951) Die Pinealblase (Stirnorgan, Parietalauge) von Xenopus laevis Daud und ihre Entwicklung, Verlagerung und Degeneration. Zool Hb Abt Anat Ontog 71:375–412

    Google Scholar 

  • Hogben L, Slome D (1931) The pigmentary effector system: VI. The dual character of endocrine coordination in amphibian colour change. Proc R Soc Lond [Biol] 108:10–53

    Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    CAS  PubMed  Google Scholar 

  • Iuvone PM, Besharse JC (1983) Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs. Brain Res 273:111–119

    Google Scholar 

  • Kawazoe I, Kawauchi H, Hirano T, Naito N (1987) Characterization of melanin concentrating hormone in teleost hypothalamus. Gen Comp Endocrinol 65:423–431

    Google Scholar 

  • Korf HW, Oksche A (1986) The pineal organ. In: Pang PKT, Schreibman MP (eds) Vertebrate Endocrinology. Fundamentals and biomedical implications. Vol. 1. Morphological considerations. Academic Press, Orlando, pp 105–145

    Google Scholar 

  • Korf HW, Liesner R, Meissl H, Kirk A (1981) Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function. Cell Tissue Res 216:113–130

    Google Scholar 

  • Korf HW, Møller M, Gery I, Zigler JS, Klein DC (1985a) Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell Tissue Res 239:81–85

    Google Scholar 

  • Korf HW, Foster RG, Ekström P, Schalken JJ (1985b) Opsin-like immunoreaction in the retinae and pineal organs of four mammalian species. Cell Tissue Res 242:645–648

    Google Scholar 

  • Korf HW, Oksche A, Ekström P, Veen T van, Zigler JS, Gery I, Stein P, Klein DC (1986) S-antigen immunocytochemistry. In: O'Brien P, Klein DC (eds) Pineal and retinal relationships. Academic Press, Orlando, pp 343–355

    Google Scholar 

  • Lek G v d, Heer J d, Burgers AC, Oordt PJ v (1958) The direct reaction of tailfin melanophores of Xenopus tadpoles to light. Acta Physiol Pharmacol Neerl 7:409–419

    Google Scholar 

  • McGuire J, Moller H (1966) Differential responsiveness of dermal and epidermal melanocytes of Rana pipiens to hormones. Endocrinology 78:367–372

    Google Scholar 

  • Mirshahi M, Faure JP, Brisson P, Falcon J, Guerlotte J, Collin JP (1984) S-antigen immunoreactivity in retinal rods and cones and pineal photosensitive cells. Biol Cell 52:195–198

    Google Scholar 

  • Møller M, Glistrup OV, Olsen W (1983) Contrast enhancement of the brownish horseradish peroxidase-activated 3,3′-diaminobenzidine tetrahydrochloride reaction product in black and white photomicrography by the use of interference filters. J Histochem Cytochem 32:37–42

    Google Scholar 

  • Müller B, Peichl L, Grip WJ de, Gery I, Korf HW (1989) Opsinand S-antigen like immunoreactions in photoreceptors of the tree shrew retina. Invest Ophthalmol Vis Sci 30:530–535

    Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal table of Xenopus laevis Daudin. North Holland Publ Comp, Amsterdam, pp 1–243

    Google Scholar 

  • Östholm T (1988) Development and distribution of photoreceptor specific molecules in the pineal complex and retina of different vertebrates. Thesis. University of Lund

  • Östholm T, Brännäs E, Veen T van (1987) The pineal organ is the first differentiated light receptor in the embryonic salmon, Salmo salar L. Cell Tissue Res 249:641–646

    Google Scholar 

  • Östholm T, Ekström P, Bruun A, Veen T van (1988) Temporal disparity in pineal and retinal ontogeny. Dev Brain Res 42:1–13

    Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livingstone, Edinburgh, p 127–146

    Google Scholar 

  • Oksche A, Harnack M von (1963) Elektronenmikroskopische Untersuchungen am Stirnorgan von Anuren (Zur Frage der Lichtrezeptoren). Z Zellforsch 59:239–288

    Google Scholar 

  • Oksche A, Hartwig HG (1979) Pineal sense organs — components of photoneuroendocrine systems. Prog Brain Res 52:113–130

    Google Scholar 

  • Parker GH (1948) Animal color changes and their neurohumours. Cambridge University Press, Cambridge, pp 1–377

    Google Scholar 

  • Pfister C, Chabre M, Plouet J, Tuyen VV, de Kosak Y, Faure JP, Kühn H (1985) Retinal S-antigen identified as the 48K protein regulating light-dependent phosphodiesterase in rods. Science 228:891–893

    Google Scholar 

  • Rollag MD (1988) Response of amphibian melanophores to melatonin. Pineal Res Rev 6:67–93

    Google Scholar 

  • Rollag MD, Korf B, Harrison K (1989) Characterization of melatonin's action at the cellular level using the amphibian melanophore model system. Adv Pineal Res 3:195–200

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenbourg, Wien

    Google Scholar 

  • Saxen L (1954) Development of the visual cells. Embryological and physiological investigations on Amphibia. Ann Acad Sci Fenn [A] 23:1–104

    Google Scholar 

  • Schalken JJ (1987) The visual pigment rhodopsin: immunochemical aspects and induction of experimental autoimmune uveoretinitis. Thesis, University of Nijmegen

  • Schalken JJ, Grip W de (1986) Enzyme-linked immunosorbent assay for quantitative determination of the visual pigment rhodopsin in total eye-extracts. Exp Eye Res 43:431–439

    Google Scholar 

  • Scharrer E (1964) Photo-neuro-endocrine systems: general concepts. Ann N Y Acad Sci 117:13–22

    Google Scholar 

  • Shinohara T, Craft CM, Stein P, Zigler JS, Wistow G, Katial A, Gery I, Klein DC (1986) Isolation of cDNAs for bovine S-antigen. In: O'Brien P, Klein DC (eds) Pineal and retinal relationships. Academic Press, Orlando, pp 331–342

    Google Scholar 

  • Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-anti horseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Stevens LC (1954) The origin and development of chromatophores of Xenopus laevis and other anurans. J Exp Zool 125:221–246

    Google Scholar 

  • Steyn W (1959) Ultrastructure of pineal eye sensory cells. Nature 183:764–765

    Google Scholar 

  • Turner CD, Bagnara JT (1976) General endocrinology. Saunders, Philadelphia, pp 1–596

    Google Scholar 

  • Veen T v, Ekström P, Nyborg L, Borg B, Vigh-Teichmann I, Vigh B (1984) Serotonin and opsin immunoreactivities in the developing pineal organ of the three-spined stickleback Gasterosteus aculeatus L. Cell Tissue Res 237:559–564

    Google Scholar 

  • Veen T v, Eloffson R, Hartwig HG, Gery I, Mochizuki M, Klein DC (1986a) Retinal S-antigen: immunocytochemical and immunochemical studies on the distribution in animal photoreceptors and pineal organs. Exp Biol 45:15–25

    Google Scholar 

  • Veen T v, Östholm T, Gierschik P, Spiegel A, Somers R, Korf HW, Klein DC (1986b) Alpha-transducin immunoreactivity in retinae and sensory pineal organs of adult vertebrates. Proc Natl Acad Sci USA 83:912–916

    Google Scholar 

  • Veen T v, Vigh-Teichmann I, Hartwig HG (1987) Pinealocytes of European green frogs do not react to serotonin antibodies. In: Scharrer B, Korf HW, Hartwig HG (eds) Functional morhology of neuroendocrine systems. Springer, Berlin Heidelberg New York, p 168

    Google Scholar 

  • Veerdonk FCG van de (1967) Demonstration of melatonin in amphibia. Curr Mod Biol 1:175–177

    Google Scholar 

  • Vigh B, Vigh-Teichmann I (1981) Lightnd electron-microscopic demonstration of immunoreactive opsin in the pinealocytes of various vertebrates. Cell Tissue Res 221:451–463

    Google Scholar 

  • Vigh B, Vigh-Teichmann I, Reinhard I, Szél A, Veen T v (1986) Immunoreactions in the developing and adult pineal organ. In: Gupta D, Reiter RJ (eds) The pineal gland during development: from fetus to adult. Croom-Helm, London, pp 31–42

    Google Scholar 

  • Warring H (1963) Color change mechanisms of cold blooded vertebrates. Academic Press, New York

    Google Scholar 

  • White BH, Sekura RD, Rollag MD (1987) Pertussis toxin blocks melatonin-induced pigment aggregation in Xenopus dermal melanophores. J Comp Physiol [B] 157:153–159

    Google Scholar 

  • Wilden U, Wüst E, Weyand I, Kühn H (1986) Rapid affinity purification of retinal arrestin (48k protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Lett 207:292–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by USUHS protocol C07049 (MDR) and the Deutsche Forschungsgemeinschaft (HWK)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korf, B., Rollag, M.D. & Korf, HW. Ontogenetic development of S-antigen- and rodopsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms. Cell Tissue Res. 258, 319–329 (1989). https://doi.org/10.1007/BF00239452

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239452

Key words

Navigation